Math, asked by abdulrasheed2941, 8 months ago

The sum of first 8th term of an A.P is 100 and sum of first 19 terms is 551 find AP

Answers

Answered by Anonymous
1

Solution:-

Given

 \rm \to \: S_8 = 100

  \rm \:  \to \: S_{19} = 551

Formula

 \boxed{ \red{ \rm \: S_n =  \dfrac{n}{2}  \{2a + (n - 1)d \}}}

Now putting the value on formula

 \rm \: 100 =  \dfrac{8}{2}  \{2a + (8 - 1)d \}

 \rm \: 100 = 4 \{2a + (7)d \}

 \rm \: 25 = 2a + 7d \:  \:  \:  \:  \:  \:  \: ....(i)eq

Now take

 \rm \: 551 =  \dfrac{19}{2}   \{2a + (19 - 1)d \}

 \rm \: 1102 = 19 \{2a + 18d \}

 \rm \: 58 = 2a + 18d \:  \:  \:  \:  \:  \:  \:  \: ....(ii)eq

Using elimination method

Subtract (i) from (ii) eq we get

 \rm \: 2a + 18d - (2a + 7d) = 58 - 25

 \rm \: 2a + 18d - 2a - 7d = 33

 \rm \: 11d = 33

 \rm \: d \:  = 3

Now put the value of d on (i ) st equation

\rm \: 25 = 2a + 7d \:  \:  \:  \:  \:  \:  \: ....(i)eq

 \rm \: 25 = 2a + 7 \times 3

 \rm \: 25 = 2a + 21

 \rm \: 2a = 25 - 21

 \rm \:  \: 2a = 4

 \rm \: a = 2

So first term (a) = 2 and common difference (d) = 3

So series are

=> 2 , 5 , 8 , 11 , ............

Similar questions