The sum of first 9 terms of an ap is 171 and that for first 24 terms is 96 find the ap
Answers
Answered by
26
ANSWER:-
Given:
The sum of first 9 terms of an A.P. is 171 & that for first 24 terms of an A.P is 96.
To find:
The A.P.
Explanation:
If a be the first term & d be the common difference of an A.P., then sum of n terms is given by Sn= [2a+(n-1)d]
A/q
a9= 171
⇒ 171= [2a+(9-1)d]
⇒ 19= [2a+8d]
⇒ 2a+8d= 38..............(1)
&
It is also given that sum of first 24 terms is 96.
a24= 96
⇒ 96= [2a+(24-1)d]
⇒ 96= 12[2a+23d]
⇒ 2a+23d= 8.................(2)
∴ Subtracting equation (1) from (2), we get;
2a+23d=8
2a+8d=38
(-) (-) (-)
__________
⇒ 15d= -30
⇒ d=
⇒ d= -2
Putting the value of d in equation (1), we get;
⇒ 2a+8d= 38
⇒ 2a+ 8(-2)=38
⇒ 2a +(-16)=38
⇒ 2a- 16=38
⇒ 2a= 38 +16
⇒ 2a= 54
⇒ a= 54/2
⇒ a= 27
Thus,
The A.P. is 27, 25, 23, 21.........
Similar questions