Math, asked by 7077, 1 year ago

The sum of first four terms of an Ap id 56 . The sum of last four terms is 112. If it's first term is 11 , Find the number of terms​

Answers

Answered by sukritvemula1997
3

Step-by-step explanation:

Let the A.P. be a, a + d, a + 2d, a + 3d, ... a + (n – 2) d, a + (n – 1)d.

Sum of first four terms = a + (a + d) + (a + 2d) + (a + 3d) = 4a + 6d

Sum of last four terms = [a + (n – 4) d] + [a + (n – 3) d] + [a + (n – 2) d] + [a + n – 1) d] = 4a + (4n – 10) d

According to the given condition,

4a + 6d = 56

⇒ 4(11) + 6d = 56 [Since a = 11 (given)]

⇒ 6d = 12

⇒ d = 2

∴ 4a + (4n –10) d = 112

⇒ 4(11) + (4n – 10)2 = 112

⇒ (4n – 10)2 = 68

⇒ 4n – 10 = 34

⇒ 4n = 44

⇒ n = 11

Thus, the number of terms of the A.P. is 11.

Answered by ajaybhadoria72
2

Step-by-step explanation:

a4=56

a+3d=56

s(n-4)=112

a=11

Similar questions