The sum of first 'm' terms of an AP is 'n' and sum of first 'n' terms is 'm'. Show that the sum of first (m+n) terms is [-(m+n)]
Answers
Answered by
5
Sm = n
m/2(2a+(m-1)d)=n. (equation no 1)
Sn = m
n/2 ( 2a+(n-1)d)=m (equation no 2),
equation 2 - 1
2an/2 + ( n^2 - n ) d - 2am - ( m^2- m ) d = m - n /2
2a ( n-m) + ( n-m) ( n+ m) -1 ( n- m) d = -2 ( n- m)
(n- m) [ 2a + ( n+m-1) d] = -2 ( n- m)
2a + ( m + n -1) d = -2 ( equation no 3)
Sm+n = m+n /2 ( 2a + ( m + n -1) d
Sm+n = m+n / 2 × -2
Sm+n = -(m+n)
m/2(2a+(m-1)d)=n. (equation no 1)
Sn = m
n/2 ( 2a+(n-1)d)=m (equation no 2),
equation 2 - 1
2an/2 + ( n^2 - n ) d - 2am - ( m^2- m ) d = m - n /2
2a ( n-m) + ( n-m) ( n+ m) -1 ( n- m) d = -2 ( n- m)
(n- m) [ 2a + ( n+m-1) d] = -2 ( n- m)
2a + ( m + n -1) d = -2 ( equation no 3)
Sm+n = m+n /2 ( 2a + ( m + n -1) d
Sm+n = m+n / 2 × -2
Sm+n = -(m+n)
Aditi1107:
thanks alot Frnd
Answered by
3
n=m/2{2a+(m-1)d}...... [1]
m=n/2{2a+(n-1)d}..... [2]
[1]-[2]
n-m= m/2{2a+(m-1)d} - n/2{2a+(n-1)d}
=am + m^2d/2 - md /2 - an - n^2d/2 + nd/2
=a(m-n) + d/2 [ m^2-m-n^2+n]
=a(m-n) + d/2 [ (m+n) (m-n) - (m-n) ]
=a(m-n) + d/2 [ (m-n)(m+n-1) ]
=(m-n) [ a +d/2(m+n-1) ]
-(m-n)= (m-n) [a + d/2(m+n-1)]
-1= 2a+d(m+n-1)/2
-2= 2a + d(m+n-1)
since, s(m+n) = (m+n)/2 * [2a+ (m+n-1)d ]
s(m+n) = (m+n)/2* -2
s(m+n) = -(m+n)
m=n/2{2a+(n-1)d}..... [2]
[1]-[2]
n-m= m/2{2a+(m-1)d} - n/2{2a+(n-1)d}
=am + m^2d/2 - md /2 - an - n^2d/2 + nd/2
=a(m-n) + d/2 [ m^2-m-n^2+n]
=a(m-n) + d/2 [ (m+n) (m-n) - (m-n) ]
=a(m-n) + d/2 [ (m-n)(m+n-1) ]
=(m-n) [ a +d/2(m+n-1) ]
-(m-n)= (m-n) [a + d/2(m+n-1)]
-1= 2a+d(m+n-1)/2
-2= 2a + d(m+n-1)
since, s(m+n) = (m+n)/2 * [2a+ (m+n-1)d ]
s(m+n) = (m+n)/2* -2
s(m+n) = -(m+n)
Similar questions