Math, asked by nandhinee40, 9 months ago

the sum of first n,2n and 3n terms of an A.p are s1,s2 and s3 respectively. prove that s3 = 3 (s2-s1).​

Answers

Answered by Anonymous
10

Answer:

Given:

\sf{Sum \ of \ n \ terms=S_{1},}

\sf{Sum \ of \ 2n \ terms=S_{2},}

\sf{Sum \ of \ 3n \ terms=S_{3}}

To prove:

\sf{S_{3}=3(S_{2}-S_{1})}

Proof:

\sf{L.H.S.=S_{3}}

\sf{=S_{3n}}

\sf{=\dfrac{3n}{2}[2a+(3n-1)d]}

____________________

\sf{R.H.S.=3(S_{2}-S_{1})}

\sf{=3(S_{2n}-S_{n})}

\sf{=3\{(\dfrac{2n}{2}[2a+(2n-1)d])-(\dfrac{n}{2}[2a+(n-1)d])\}}

\sf{=3\{(n[2a+2nd-d])-(n[a+\dfrac{nd}{2}-\dfrac{d}{2}])\}}

\sf{=3\{n[2a-a+2nd-\dfrac{nd}{2}-d+\dfrac{d}{2}]\}}

\sf{=3\{n[a+\dfrac{4nd-nd}{2}-\dfrac{2d+d}{2}]\}}

\sf{=3\{n[a+\dfrac{3nd}{2}-\dfrac{d}{2}]\}}

\sf{Taking \ \dfrac{1}{2} \ as \ common}

\sf{=3\{\dfrac{n}{2}[2a+3nd-d]\}}

\sf{=\dfrac{3n}{2}[2a+(3n-1)d]}

\sf{=L.H.S.}

\sf{Hence \ proved,}

\purple{\tt{S_{3}=3(S_{2}-S_{1})}}

Answered by Anonymous
5

plz refer to this attachment

Attachments:
Similar questions