Math, asked by shobasan14, 9 months ago

The sum of first n natural numbers is given by 1/2 n^2 + 1/2 n. 1) Find the sum of first 11 natural numbers. 2) find the sum of natural numbers from 11 to 30. NO WRONG ANSWERS!!!

Answers

Answered by Anonymous
2

Answer:

\sf{(1) \ The \ sum \ of \ first \ 11 \ natural}

\sf{natural \ is \ 66.}

\sf{(2) \ The \ sum \ of \ natural \ numbers \ from}

\sf{11 \ to \ 30 \ is \ 410.}

Given:

\sf{The \ sum \ of \ first \ n \ natural}

\sf{numbers \ is \ given \ by}

\sf{\dfrac{1}{2}\times \ n^{2}+\dfrac{1}{2}\times \ n}

To find:

\sf{1) \ The \ sum \ of \ 11 \ natural \ numbers.}

\sf{2) \ The \ sum \ of \ natural \ numbers \ from}

\sf{11 \ to \ 30.}

Solution:

\sf{(1)}

\sf{S_{n}=\dfrac{1}{2}\times \ n^{2}+\dfrac{1}{2}\times \ n}

\sf{Put \ n=11 \ we \ get,}

\sf{\therefore{S_{11}=\dfrac{1}{2}\times11^{2}+\dfrac{1}{2}\times11}}

\sf{\therefore{S_{11}=\dfrac{121}{2}+\dfrac{11}{2}}}

\sf{\therefore{S_{11}=\dfrac{121+11}{2}}}

\sf{\therefore{S_{11}=\dfrac{132}{2}}}

\sf{\therefore{S_{11}=66}}

\sf\purple{\tt{\therefore{The \ sum \ of \ first \ 11 \ natural}}}

\sf\purple{\tt{natural \ is \ 66.}}

_________________________________

\sf{(2)}

\sf{Sum \ of \ natural \ numbers \ from \ 11 \ to \ 30}

\sf{can \ given \ by \ S_{30}-S_{10}}

\sf{=(\dfrac{1}{2}\times30^{2}+\dfrac{1}{2}\times30)-(\dfrac{1}{2}\times10^{2}+\dfrac{1}{2}\times10)}

\sf{=\dfrac{1}{2}(30^{2}+30)-\dfrac{1}{2}(10^{2}+10)}

\sf{=\dfrac{1}{2}(900+30)-\dfrac{1}{2}(100+10)}

\sf{=\dfrac{1}{2}(930-110)}

\sf{=\dfrac{1}{2}(820)}

\sf{=410}

\sf\purple{\tt{\therefore{The \ sum \ of \ natural \ numbers \ from}}}

\sf\purple{\tt{11 \ to \ 30 \ is \ 410.}}

Similar questions