Math, asked by riyamarylaiju30, 10 months ago

The sum of first ‘n’ terms of an AP is given by Sn = 3n square - n. Find AP.
.
.
.
.
.
.
.
.
Plzzzz answer plz♥️♥️

Answers

Answered by BrainlyConqueror0901
33

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{A.P=2,8,14,20,.....}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies s_{n} =  {3n}^{2}  - n \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies A.P= ?

• According to given question :

 \tt \circ \:  s_{n}  =  {3n}^{2}  - n \\  \\   \tt\because  \: N= 1,2,3,.... \\  \\  \bold{As \: we \: know \: that(n = 1)} \\  \tt:\implies  s_{1} = 3 \times  {1}^{2}  -1 \\  \\ \tt:\implies  s_{1} =3 - 1 \\  \\  \green{\tt:\implies  s_{1} =2 =  a_{1} } \\  \\  \bold{For \: (n = 2)} \\ \tt:\implies  s_{2} =3 \times  {2}^{2}  - 2 \\  \\ \tt:\implies  s_{2} =3 \times 4 - 2 \\  \\ \tt:\implies  s_{2} =12 - 2 \\  \\  \green{\tt:\implies  s_{2} =10} \\  \\  \bold{For \: second \: term : } \\ \tt:\implies  a_{2} = s_{2} -  s_{1} \\  \\ \tt:\implies  a_{2} =10 - 2 \\  \\  \green{\tt:\implies  a_{2} =8} \\  \\  \bold{For \:( n = 3)} \\  \\ \tt:\implies  s_{3} =3 \times  {3}^{2}  - 3 \\  \\ \tt:\implies  s_{3} =3 \times 9 - 3 \\  \\ \tt:\implies  s_{3} =27 - 3 \\  \\  \green{\tt:\implies  s_{3} =24} \\  \\  \bold{For \:third \: term : } \\ \tt:\implies a_{3} = s_{3} -  s_{2} \\  \\ \tt:\implies a_{3} = 24 - 10 \\  \\  \green{\tt:\implies a_{3} =14} \\  \\   \green{\tt \therefore A.P = 2,8,14,20,......}

Answered by CunningKing
76

\bigstar\ \Large\underline{\bold{\tt{GIVEN :}}}

The sum of the first n terms of an A.P. is given by :-

\displaystyle{\tt{S_n=3n^2-n}}

\bigstar\ \Large\underline{\bold{\tt{TO\ FIND :}}}

The A.P.

\bigstar\ \Large\underline{\bold{\tt{ACKNOWLEDGEMENT :}}}

\displaystyle{\tt{S_n-S_{n-1}=a_n}}

\displaystyle{\tt{\implies S_{n-1}=3(n-1)^2-(n-1)}}

\bigstar\ \Large\underline{\bold{\tt{SOLUTION :}}}

For a₁,

a₁ = S₁ - S₍₁₋₁₎

⇒a₁ = 3(1)² - (1) - [3(1 - 1)² - (1 - 1)]

⇒a₁ = 3 - 1 - (0 - 0)

⇒a₁ = 3 - 1

⇒a₁ = 2

\rule{176}{2}

For a₂,

a₂ = S₂ - S₍₂₋₁₎

⇒a₂ = 3(2)² - 2 - [3(2 - 1)² - (2 - 1)]

⇒a₂ = 12 - 2 - (3 - 1)

⇒a₂ = 10 - 2

⇒a₂ = 8

\rule{176}{2}

For a₃,

a₃ = S₃ - S₍₃₋₁₎

⇒a₃ = 3(3)² - 3 - [3(3 - 1)² - (3 - 1)]

⇒a₃ = 27 - 3 - (12 - 2)

⇒a₃ = 24 - 10

⇒a₃ = 14

\rule{176}{2}

Now, we get d = a₂ - a₁ = a₃ = a₂ = 6

So, the AP is 2, 8, 14, 20, 26, ......

Similar questions