The sum of first n terms of an AP is oppation (1). S=n/2{2a+(n+1)d}. (2). S=a+(n-1)d. (3). S=n{2a+(n-1)d} (4) . S=n/2{2a+(n-1)d}
Answers
Answered by
1
Answer:
Option 4:
Step-by-step explanation:
Let's assume that, the Arithmetic Progression is:
a, (a + d), (a + 2d), (a + 3d), . . . . . . . . .
The nth term = a + (n - 1)d . . . . . . . . . . . . . (i)
If the sum of first n terms = S, then,
S = a + (a+d) + (a+2d) + . . . . . . . . . + [a+(n-3)d]+[a+(n-2)d]+[a+(n-1)d]
S =[a+(n-1)d]+[a+(n-2)d]+[a+(n-3)d] + . . . . . . . . . + (a+2d) + (a+d) + a
Adding up the above two equations:
2S=[2a+(n-1)d]+[2a+(n-1)d]+[2a+(n-1)d]+ . . . . +[2a+(n-1)d]+[2a+(n-1)d]+[2a+(n-1)d]
=> 2S = n.[(2a) + (n-1)d] = 2an + n(n - 1)d
∴
Option 4 is the correct answer.
Similar questions
Biology,
2 months ago
India Languages,
2 months ago
Math,
2 months ago
Geography,
11 months ago
Math,
11 months ago