Math, asked by chahalgurmeet, 7 months ago

The sum of first q terms of an A.P. is 63q – 3q2. If its pth term is -60, find the value of p, Also, find the 11th term of this A.P.​

Answers

Answered by Anonymous
169

Given :-

  • The sum of first q terms of an A.P is \sf63q - 3q^{2}
  • Its pth term is -60.

To Find :-

  • Value of P and 11th term of this A.P.

Solution :-

\sf The\: sum \: of \:  first \: q \: terms = 63q - 3q^{2}\\

\sf  \pink{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  S_{q}= 63q - 3q^{2}}\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies S_{1}= 63(1) - 3(1)^{2}\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \pink{\:\::\implies S_{1}= 60 = a_{1}}\\

\sf \underline {Substituting \: 2 \: in \: the \: place \: of \: q}\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies S_{2}= 63(2) - 3(2)^{2}\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies S_{2}= 126 - 12\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies   S_{2}= 114 = a_{1} + a_{2}\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  a_{2} = S_{2} - S_{1}\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \:\pink{ \:\::\implies  a_{2} = 114 - 60 = 54}\\

  • Common difference = Second term - first term

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies d = a_{2} - a_{1}\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies  d = 54 - 60 = -6\\

\sf We \: are \: given:- \green{ \: pth \: term = -60}\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \:\pink{ \:\::\implies a_{p} = -60}\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies a + (p - 1)d = -60\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies 60 + (p - 1)(-6)= -60\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies (p - 1)(-6) = -60 -60\\

\sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies p - 1 = \cancel{\dfrac{-120}{-6}}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies p - 1 = 20\\

\sf   \:  \:  \:  \:   \:  \:  \:  \:  \: \pink{\:\::\implies p= 21}\\

\therefore\:\underline{\textsf{ Value of p is  \textbf{21}}}.\\

\sf \underline{ 11th\: term}:-

\sf\red{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies a_{11} = a + 10d}\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies a_{11}= 60 + 10(-60)\\

\sf \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies a_{11}= 60 - 60\\

\sf \red{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies a_{11}= 0}\\

\therefore\:\underline{\textsf{ The 11th term is  \textbf{0}}}.\\

Answered by saimanojpatnaik
52

Step-by-step explanation:

make me branlist

Hope the answer is helpful to you

Okkk

Attachments:
Similar questions