Math, asked by sounakguhathakurta, 8 months ago

the sum of first six terms of an AP is 42. The ratio of its 10th and its 30th term is 1:3. Calculate the first and the 13th term of the AP

Answers

Answered by amansharma264
22

EXPLANATION.

Sum of first 6 terms of an Ap = 42.

 \sf :  \implies \: formula \: of \: sum \: of \: n \: terms \: of \: an \: ap \\  \\ \sf :  \implies \:  s_{n} \:  =  \frac{n}{2} (2a + (n - 1)d) \\  \\  \sf :  \implies \:  \:  s_{6} \:  =  \frac{6}{2}(2a \:  + 5d) = 42 \\  \\  \sf :  \implies \: 3(2a + 5d)  = 42\\  \\ \sf :  \implies \: 6a \:  + 15d \:  = 42 \:  \:  \:  \\  \\  \sf :  \implies \: 2a \:  + 5d \:  = 14 \:  \:  \: .....(1)

The ratio of it's 10th and 30th term is 1:3.

\sf :  \implies \:  \dfrac{ t_{10} }{ t_{30}}  =  \dfrac{1}{3}  \\  \\ \sf :  \implies \:  \frac{a + 9d}{a + 29d}  =  \frac{1}{3}  \\  \\ \sf :  \implies \: 3a \:  + 27d \:  = a \:  + 29d \\  \\  \sf :  \implies \: 2a \:  = 2d \\  \\ \sf :  \implies \: a \:  = d \:  \:  \: .....(2)

\sf :  \implies \: from \: equation \: (1) \:  \:  \: and \:  \:  \: (2) \:  \:  \: we \: get \\  \\ \sf :  \implies \: 2a \:  +  \: 5a \:  = 14 \\  \\ \sf :  \implies \: 7a \:  = 14 \\  \\ \sf :  \implies \: a \:  = 2 \\  \\ \sf :  \implies \: d \:  = 2

=> 13th term of an Ap

=> a + 12d

=> 2 + 12 X 2

=> 26

Therefore,

First term = 2

13 th term = 26.

Answered by rocky200216
112

\bf{\gray{\underbrace{\blue{GIVEN:-}}}}

  • The sum of first six terms of an AP is 42 .

  • The ratio of its 10th and 30th term is 1:3 .

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  1. The first term of the A.P .
  2. The 13th term of the AP .

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

\orange\bigstar\:\bf{\red{\overbrace{\underbrace{\purple{S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)\:d]\:}}}}}

\green\bigstar\:\bf{\red{\overbrace{\underbrace{\purple{t_n\:=\:a\:+\:(n\:-\:1)\:d\:}}}}}

Where,

  • a = first term

  • n = no. of term's .

  • d = common difference .

✨ According to the question,

CASE - 1 :-

\bf{:\implies\:S_6\:=\:\dfrac{6}{2}\:[2a\:+\:(6\:-\:1)\:d]\:}

\rm{:\implies\:42\:=\:3\:[2a\:+\:5d]\:}

\rm{:\implies\:2a\:+\:5d\:=\:\dfrac{42}{3}\:}

\bf\green{:\implies\:2a\:+\:5d\:=\:14\:}----(1)

CASE - 2 :-

\bf{:\implies\:\dfrac{t_{10}}{t_{30}}\:=\:\dfrac{1}{3}\:}

\rm{:\implies\:\dfrac{a\:+\:(10\:-\:1)\:d}{a\:+\:(30\:-\:1)\:d}\:=\:\dfrac{1}{3}\:}

\rm{:\implies\:\dfrac{a\:+\:9d}{a\:+\:29d}\:=\:\dfrac{1}{3}\:}

\rm{:\implies\:3a\:+\:27d\:=\:a\:+\:29d\:}

\rm{:\implies\:3a\:-\:a\:+\:27d\:-\:29d\:=\:0\:}

\rm{:\implies\:2a\:-\:2d\:=\:0\:}

\rm{:\implies\:2a\:=\:2d\:}

\bf\green{:\implies\:a\:=\:d\:}

⍟ Now putting the value of a in the equation (1),

\rm{:\implies\:2a\:+\:5d\:=\:14\:}

\rm{:\implies\:2d\:+\:5d\:=\:14\:}

\rm{:\implies\:7d\:=\:14\:}

\rm{:\implies\:d\:=\:\dfrac{14}{7}\:}

\bf\pink{:\implies\:d\:=\:2\:}

\bf\blue{:\implies\:a\:=\:2\:}

⍟ Now, to calculate the 13th term of the A.P .

\bf{:\implies\:t_{13}\:=\:a\:+\:(13\:-\:1)\:d\:}

\rm{:\implies\:t_{13}\:=\:2\:+\:12\times{2}\:}

\rm{:\implies\:t_{13}\:=\:2\:+\:24\:}

\bf\purple{:\implies\:t_{13}\:=\:26\:}

___________________________

\pink\therefore The first term of the A.P is "2" .

\pink\therefore The 13th term of the A.P is "26" .

Similar questions