Math, asked by jatin7898, 6 months ago

The sum of first three terms of a G.P is 13/12 and their product is -1 Find the common ratio and the terms​

Answers

Answered by aryangupta27941
19

Step-by-step explanation:

let \: the \: three \: terms \: of \: g \: p \: are  \:  \:  \:  \: \ \\  \frac{a}{r} \:  .\:  \: a \:  \: . \: ar \\ according \: to \: question \\  \frac{a}{r}  + a + ar = \frac{13}{12}  ..........(1)\\  \frac{a}{r}  \times a \times ar =  - 1 \\  {a}^{3}  =  - 1 \\ a  =  - 1 \\

put \: the \: value \: of \: a \: in \: equation \: (1). \\  \frac{( - 1)}{r}  + ( - 1) + ( - 1) \times r =  \frac{13}{12}  \\  \frac{ - 1}{r}  - 1 - r =  \frac{13}{12}  \\  \frac{ - 1 - r -  {r}^{2} }{r}  =  \frac{13}{12}  \\  - 12 - 12r - 12 {r}^{2}  = 13r \\ 12 {r}^{2}   + 12r + 13r + 12 = 0 \\ 12 {r}^{2}  + 25r + 12 = 0

12 {r}^{2}  + 16r + 9r + 12 = 0 \\ 4r(3r + 4) + 3(3r + 4) = 0 \\ (4r + 3)(3r + 4) = 0 \\ r =  \frac{ - 3}{4}  \:  \:  \:  \:  \: . \:  \:  \:  \frac{ - 4}{3}

terms =  \frac{4}{3} . - 1. \frac{3}{4}  \:  \: and \\  \frac{3}{4} . - 1. \frac{4}{3}

Similar questions