Math, asked by student206, 6 months ago

The sum of first three terms of a G.P. is 13
/12
and their product is -1. Find the common ratio

and the terms.​

Answers

Answered by aryan073
21

Given:

The sum of first three terms of a G.P = 13/12

their product =-1

To find :

The common ratio and the terms=?

Solution :

  \large  \red{\bold { \underline{step \: by \: step \: explaination}}}

\\ \implies\green{\sf{ Let \: the \: terms \: of \: G.P. \: be \: \dfrac{a}{r} \: , \: a , \: ar }}

\blue\bigstar\pink{\sf{It \: is \: given \: that}}

 \\  \implies \green{ \sf {  \frac{a}{r}  + a + ar =  \frac{13}{12} }} \:  \: and \:  \:   \blue{ \sf{ \:  \frac{a}{r} \times a \times ar =  - 1}}

 \\  \implies \large \purple{ \sf{ \: a \bigg( \frac{ {r}^{2} + r+ 1 }{r}  \bigg) =  \frac{13}{12} }} \:  \: and \: \purple{ \sf{ \:  {a}^{3}  =  - 1}}

 \\  \implies \sf \purple {\: a \:  =  - 1 \:  \: and \:  \: a( {r}^{2}  + r + 1) =  \frac{13r}{12} }

 \\  \implies \sf{ \purple{ \:  {r}^{2}  + r + 1 =  -  \frac{13r}{12} }}

 \\  \implies \sf { \purple{ \: 12 {r}^{2}  + 25r + 12 = 0}}

  \\ \implies \sf{ \purple{ \: 12 {r}^{2}  +  \pink{16r + 9r }+ 12 = 0}}

 \\  \implies \sf{ \purple{(3r + 4)(4r + 3) = 0}}

  \\ \implies \sf{ \purple{ \: \red{ r =  \frac{ - 4}{3}  }\: and  \:  \: \red{r =   \frac{ - 3}{4} }}}

  \implies \sf{ \purple{ \boxed{ \:  \red{r =  \frac{ - 3}{4}  } \:  \:  \: and \:  \:  \: \red{ r =  \frac{ - 4}{3} }}}}

  \\  \therefore\sf { \blue{ \: hence \: three \: numbers \: are \:  \frac{ - 3}{4}  \:  and \:  - 1 \: and \:  \frac{ - 4}{3} }}

Similar questions