the sum of first three terms of a GP is 7 and sum of their squares is 21 find the first five terms of the GP
Answers
Answer:
4, 2, 1
Step-by-step explanation:
Let a1, a2, a3 be terms in a G.P
a1+a2+a3 = 7
a1^2 + a2^2 + a3^2 = 21
But we know that:
a1= a1
a2= a1*r
a3= a1*r^2
==> a1+ a2 + a3
= a1+ a1r+ a1r^2 = 7
= a1(1+r + r^2) = 7
Now let us square:
==> a1^2 (r^2 + r + 1)^2= 49........(1)
Also:
==> a1^2 + a2^2 + a3^2 =
= a1^2 + (a1r)^2 + a1^2*r^4 = 21
= a1^2 (1 + r^2 + r^4) = 21 .........(2)
Let us divide (2) by (1):
==> (1+r^2+ r^4)/(r^2 +r + 1 )^2 = 21/49
==> (1+r^2 + r^4)/ (r^2 + r+1)^2 = 3/7
But r^4 + r^2 + 1= (r^2 +1)^2 - r^2= (r^2+1+r)(r^2+1-r)
Now substitute:
==? (r^2 + r+ 1)(r^2 -r + 1)/(r^2 + r + 1)^2 = 3/7
==> (r^2 -r + 1)/(r^2 + r + 1) = 3/7
==> Cross multiply:
==> 7(r^2 -r +1) = 3(r^2 + r + 1)
==> 7r^2 - 7r + 7 = 3r^2 + 3r + 3
Group similar:
==> 4r^2 -10r + 4 = 0
Divide by 2:
==> 2r^2 - 5r +2 = 0
==> r1= [5 + sqrt(25 -16)/4=
= [5 + 3]]/4 = 8/4 = 2
==> r2= 5-3/4= 2/4 = 1/2
For r= 2
a1(1+r+r^2 ) = 7
a1(1+2+4) = 7
a1= 7/7= 1
a2= 2
a3= 4
==> 1,2,4 is the G.P\
For r= 1/2:
a1(1+1/2+ 1/4) = 7
a1= 7 * 4/7= 4
a2= 2
a3= 1
4, 2, 1 is the G.P