The sum of first three terms of an AP is 24and the sum of their squares is 224.Find the first three terms of the AP.
Answers
Answer:
4 , 8 and 12 are the numbers .
Step-by-step explanation:
Let the A.P be a - d , a , a + d .
Here d = common difference .
Note that the sum of first 3 numbers = 24 .
1 st number = a - d
2 nd number = a
3 rd number = a + d
a - d + a + a + d = 24
⇒ 3 a = 24
⇒ a = 24/3
⇒ a = 8
So a = 8 .
Now sum of squares = 224 .
⇒ ( a - d )² + a² + ( a + d )² = 224
⇒ a² + d² - 2 ad + a² + a² + 2 ad + d² = 224
⇒ 3 a² + 2 d² = 224
⇒ 3 ( 8 )² + 2 d² = 224
⇒ 3 × 64 + 2 d² = 224
⇒ 192 + 2 d² = 224
⇒ 2 d² = 224 - 192
⇒ d² = 32 / 2
⇒ d² = 16
⇒ d = ± 4
So a - d , a , a + d
= 8 - 4 , 8 , 8 + 4
= 4 , 8 , 12
or , a - d , a , a + d
= 8 + 4 , 8 , 8 - 4,
= 12 , 8 , 4 .
NOTE :
The formula used for ( a - b )² = a² + b² - 2 ab
The formula used for ( a + b )² = a² + b² + 2 ab
When we are comparing a² = x
Then note that a = ± √x