Math, asked by erbjs3721, 1 year ago

The sum of first three terms of an AP is 24and the sum of their squares is 224.Find the first three terms of the AP.

Answers

Answered by Anonymous
14

Answer:

4 , 8 and 12 are the numbers .


Step-by-step explanation:


Let the A.P be a - d , a , a + d .

Here d = common difference .


Note that the sum of first 3 numbers = 24 .


1 st number = a - d

2 nd number = a

3 rd number = a + d


a - d + a + a + d = 24

⇒ 3 a = 24

⇒ a = 24/3

⇒ a = 8


So a = 8 .

Now sum of squares = 224 .

⇒ ( a - d )² + a² + ( a + d )² = 224

⇒ a² + d² - 2 ad + a² + a² + 2 ad + d² = 224

⇒ 3 a² + 2 d² = 224

⇒ 3 ( 8 )² + 2 d² = 224

⇒ 3 × 64 + 2 d² = 224

⇒ 192 + 2 d² = 224

⇒ 2 d² = 224 - 192

⇒ d² = 32 / 2

⇒ d² = 16

⇒ d = ± 4


So a - d , a , a + d

= 8 - 4 , 8 , 8 + 4

= 4 , 8 , 12


or , a - d , a , a + d

= 8 + 4 , 8 , 8 - 4,

= 12 , 8 , 4 .


NOTE :


The formula used for ( a - b )² = a² + b² - 2 ab

The formula used for ( a + b )² = a² + b² + 2 ab


When we are comparing a² = x

Then note that a = ± √x

Similar questions