The sum of four conceculuce number is an AP is 32 and the ratio of the product of the firstand the last term of the product of two middle term is 7 : 15 find in number
Answers
Answered by
0
The answer is given below :
Let, the four consecutive numbers are
(a - 3d), (a - d), (a + d) and (a + 3d).
Given that,
(a - 3d) + (a - d) + (a + d) + (a + 3d) = 32
=> 4a = 32
=> a = 8
So, the numbers are
(8 - 3d), (8 - d), (8 + d) and (8 + 3d).
Given that :
(8 - 3d)(8 + 3d) : (8 - d)(8 + d) = 7 : 15
=> (64 - 9d²) : (64 - d²) = 7 : 15
=> (64 - 9d²)/(64 - d²) = 7/15
=> 960 - 135d² = 448 - 7d²
=> 128d² = 512
=> d² = 4
So, d = ± 2.
So, the numbers are :
2, 6, 10, 14
or,
14, 10, 6, 2.
Therefore, the four consecutive numbers are
2, 6, 10, 14.
Thank you for your question.
Let, the four consecutive numbers are
(a - 3d), (a - d), (a + d) and (a + 3d).
Given that,
(a - 3d) + (a - d) + (a + d) + (a + 3d) = 32
=> 4a = 32
=> a = 8
So, the numbers are
(8 - 3d), (8 - d), (8 + d) and (8 + 3d).
Given that :
(8 - 3d)(8 + 3d) : (8 - d)(8 + d) = 7 : 15
=> (64 - 9d²) : (64 - d²) = 7 : 15
=> (64 - 9d²)/(64 - d²) = 7/15
=> 960 - 135d² = 448 - 7d²
=> 128d² = 512
=> d² = 4
So, d = ± 2.
So, the numbers are :
2, 6, 10, 14
or,
14, 10, 6, 2.
Therefore, the four consecutive numbers are
2, 6, 10, 14.
Thank you for your question.
Similar questions