The sum of four consecutive numbers in an AP is 32 and the ratio of the product of first and last term to the product of two middle terms is 7:15. Find the numbers.
Answers
Answered by
0
here is your answer what you want. ...
pl.....s mark my answer as a brainlist one
Attachments:
Answered by
2
Answer:
2 , 6, 10 , 14 .
Step-by-step explanation:
Let four consecutive number as
a - 3 d , a - d , a + d , a + 3 d .
Given their sum is 32 .
a + a + a + a + 3 d - 3 d = 32
4 a = 32
a = 8 .
Now :
Also given the ratio of the product of the first and the last term to product of two middle term to the product of two middle terms is 7:15 .
We have a = 8
960 - 135 d² = 448 - 7 d²
135 d² - 7 d² = 960 - 448
128 d² = 512
d² = 4
d = ± 2
When d = 2
Numbers are ,
a - 3 d , a - d , a + d , a + 2 d
= > 8 - 6 = 2
= > 8 - 2 = 6
= > 8 + 2 = 10
= > 8 + 6 = 14
When d = - 2
= > 8 + 6 = 14
= > 8 + 2 = 10
= > 8 - 2 = 6
= > 8 - 6 = 2 .
But both ways we get same numbers.
i.e. 2 , 6, 10 , 14 .
Similar questions