Math, asked by queen2700, 1 year ago

the sum of four consecutive terms which are in an ap is 32 and the ratio of the product of the first and the last term to the product of two middle term is 7:15 find the number ​

Answers

Answered by MrGame00
6

Hey User !

=) Let the four consecutive numbers in AP be (a - 3d), (a - d), (a + d) and (a + 3d)

So, according to the question.

a-3d + a - d + a + d + a + 3d = 32

4a = 32

a = 32/4

a = 8 ......(1)

Now, (a - 3d)(a + 3d)/(a - d)(a + d) = 7/15

15(a² - 9d²) = 7(a² - d²)

15a² - 135d² = 7a² - 7d²

15a² - 7a² = 135d² - 7d² 

8a² = 128d²

Putting the value of a = 8 in above we get.

8(8)² = 128d²

128d² = 512

d² = 512/128

d² = 4

d = 2

So, the four consecutive numbers are

8 - (3*2)

8 - 6 = 2

8 - 2 = 6

8 + 2 = 10

8 + (3*2)

8 + 6 = 14

Four consecutive numbers are 2, 6, 10 and 14

Hope , It Helps ...

Answered by BendingReality
2

Answer:

Answer:

 2 , 6, 10 , 14 .

Step-by-step explanation:

Let four consecutive number as

a - 3 d , a - d , a + d , a + 3 d .

Given their sum is 32 .

a + a + a + a + 3 d - 3 d = 32

4 a = 32

a = 8 .

Now :

Also given the ratio of the product of the first and the last term to product of two middle term to the product of two middle terms is 7:15 .

\displaystyle{\dfrac{(a-3d)(a+3d)}{(a-d)(a+d)} = \dfrac{7}{15} }\\\\\\\displaystyle{\dfrac{a^2-(3d)^2}{a^2-d^2} = \dfrac{7}{15} }

We have a = 8

\displaystyle{\dfrac{64-(3d)^2}{64-d^2} = \dfrac{7}{15} }\\\\\\\displaystyle{\dfrac{64-9d^2}{64-d^2} = \dfrac{7}{15} }\\\\\\

960 - 135 d² = 448 - 7 d²

135 d² - 7 d²  = 960 - 448

128 d²  = 512

d²  = 4

d = ± 2

When d = 2

Numbers are ,

a - 3 d , a - d ,  a + d , a + 2 d

= > 8 - 6 = 2

= > 8 - 2 = 6

= > 8 + 2 = 10

= > 8 + 6 = 14

When d = - 2

= > 8 + 6 = 14

= > 8 + 2 = 10

= > 8 - 2 = 6

= > 8 - 6 = 2 .

But both ways we get same numbers.

i.e.  2 , 6, 10 , 14 .

Step-by-step explanation:

Similar questions