Math, asked by puthensanjeev, 11 months ago

The sum of four cosechtive terms of an Ap are 32 and ratio of the product of their first and last terms to the product of the 2 middle terms is 7:15 find the numbers

Answers

Answered by sanishaji30
0

Answer:

Four consecutive numbers are 2, 6, 10 and 14

Step-by-step explanation:

Solution:-

Let the four consecutive numbers in AP be (a - 3d), (a - d), (a + d) and (a + 3d)

So, according to the question.

a-3d + a - d + a + d + a + 3d = 32

4a = 32

a = 32/4

a = 8 ......(1)

Now, (a - 3d)(a + 3d)/(a - d)(a + d) = 7/15

15(a² - 9d²) = 7(a² - d²)

15a² - 135d² = 7a² - 7d²

15a² - 7a² = 135d² - 7d² 

8a² = 128d²

Putting the value of a = 8 in above we get.

8(8)² = 128d²

128d² = 512

d² = 512/128

d² = 4

d = 2

So, the four consecutive numbers are

8 - (3*2)

8 - 6 = 2

8 - 2 = 6

8 + 2 = 10

8 + (3*2)

8 + 6 = 14

Four consecutive numbers are 2, 6, 10 and 14

Similar questions