Math, asked by mchaurasia552, 10 months ago

the sum of how many terms of the AP 8, 6, 4, 2,....... is 18 ? state the reason for the double answer describe this question solution​

Answers

Answered by Anonymous
8

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ sum \ of \ 3 \ terms \ of \ AP \ is \ 18.}

\sf\orange{Given:}

\sf{The \ given \ AP \ is}

\sf{\implies{8, \ 6, \ 4, \ 2,…}}

\sf\pink{To \ find:}

\sf{Sum \ of \ how \ many \ terms \ is \ 18.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ AP \ is}

\sf{\implies{8, \ 6, \ 4, \ 2,…}}

\sf{Here, \ a=8, \ d=6-8=-2}

\boxed{\sf{Sn=\frac{n}{2}[2a+(n-1)d]}}

\sf{\therefore{18=\frac{n}{2}[2(8)+(n-1)(-2)]}}

\sf{\therefore{18=n[8+(n-1)(-1)]}}

\sf{\therefore{18=n[8-n+1]}}

\sf{\therefore{18=n[-n+9]}}

\sf{\therefore{18=-n^{2}+9n}}

\sf{\therefore{-n^{2}+9n-18=0}}

\sf{\therefore{-n^{2}+3n+6n-18=0}}

\sf{\therefore{-n(n-3)+6(n-3)=0}}

\sf{\therefore{(n-3)(-n+6)=0}}

\sf{\therefore{n=3 \ or \ -6}}

\sf{But, \ n \ can't \ be \ negative.}

\sf{\therefore{n=3}}

\sf\purple{\tt{\therefore{The \ sum \ of \ 3 \ terms \ of \ AP \ is \ 18.}}}

Similar questions