Math, asked by abnashchander74, 9 months ago

the sum of infinity of series 1+2/3+6/9+​

Answers

Answered by kumardurgesh
0

Step-by-step explanation:

24/36 is your answer bro please like

Answered by CopyThat
20

Question :

Find the sum to infinity of the series 1\;+\;\frac{2}{3}\;+\;\frac{6}{3^2}\;+\;\frac{10}{3^3}\;+\;\frac{14}{3^4}\;+\;...\;is

Solution :

Let S = 1\;+\;\frac{2}{3}\;+\;\frac{6}{3^2}\;+\;\frac{10}{3^3}\;+\;\frac{14}{3^4}\;+\;...\rightarrow(1)

\frac{1}{3}S\;=\;\frac{1}{3}\;+\;\frac{2}{3^2}\;+\;\frac{6}{3^3}\;+\;\frac{10}{3^4}\;+\;...\rightarrow(2)

Subtracting (2) from (1),

S(1\;-\;\frac{1}{3})\;=\;1\;+\;\frac{1}{3}\;+\;\frac{4}{3^2}\;+\frac{4}{3^3}\;+\;\frac{4}{3^4}\;+\;...

S(\frac{2}{3})\;=\;\frac{4}{3}\;+\;\frac{4}{3^2}\;(1\;+\;\frac{1}{3}\;+\;\frac{1}{3^2}\;+\;...)

\frac{2}{3}S\;=\;\frac{4}{3}\;+\;\frac{4}{3^2}(\frac{1}{1-\frac{1}{3}) }

\frac{2}{3}S\;=\;\frac{4}{3}\;+\;\frac{4}{3^2}.\frac{3}{2}\;=\;2

S\;=\;3

Similar questions