Math, asked by pandaXop, 6 months ago

The sum of infinity of the series 2/3 – 4/3² + 2/3³ + 4/3⁴ is​

Answers

Answered by Anonymous
51

 \huge \bf \: answer

Firstly let's rearrange it

\sf\bigg(\dfrac{2}{3}+\dfrac{2}{3^3}+\dfrac{2}{3}^{4}.\bigg)-\bigg(\dfrac{4}{3}^{2}+\dfrac{4}{3}^{4}...\bigg)

 \sf \: First \: series

2 \bigg(\dfrac{1}{3}   +  \dfrac{1}{ {3^{3} }   + \dfrac {1}{3}^{5}...\bigg)

It is a gp infinite series.

 \sf \: first \: term \:  =  \dfrac{1}{3}

 \sf \: r \:  =  \dfrac{1}{ {3}^{3} }  \div  \dfrac{1}{3}

 \sf \: r \:  =  \dfrac{1}{ {3}^{2} }

Sum of infinite terms in gp

 \sf \:  =  \dfrac{a}{1 - r}

 \sf \:  =  \dfrac{ \dfrac{1}{3} }{ \dfrac {1- }{3}^{2} }

 \sf \:  \dfrac{ \dfrac{1}{3} }{ \dfrac{8}{9}} = \dfrac {1}{3} \times \dfrac {9}{8}

 \sf \bold { \dfrac{3}{8} }

 \sf\: first \: series \:  =

2( \dfrac{1}{3}   +  \dfrac{1}{ {3}^{3} }   + \dfrac {1}{3}^{5}....) = 2( \dfrac{3}{8} </p><p>) =  \frac{3}{8} .

 \sf \: second \: series \:

 \sf \: 4 ( \dfrac{1}{ {3}^{2} }  -   \dfrac{1}{ {3}^{4} }....)

 \sf \: first \: term(a) = \dfrac {1}{3}^{2}

 \sf \: r \:  =  \ffrac{1}{ {3}^{4} }  \div  \dfrac{1 }{ {3}^{2} }

 \sf \: r \:  =  \dfrac{1}{ {3}^{2} }

 \sf \: sum \: of \: infinite \: series \:

 \sf \:  \dfrac{a}{1 - r}

 \frac{ \dfrac{1}{ {3}^{2} } }{1 -  \dfrac{1}{3}^{2} }

 \sf \: s \:  =  \dfrac{1}{9}  \times  \frac{9}{8}

 \sf \: s \:  =  \dfrac{9}{8}

 \sf \: Required \: sum \: series

 \sf \:  \sf \: 4 ( \dfrac{1}{ {3}^{2} }  -   \dfrac{1}{ {3}^{4} }....)  = 4( \dfrac{1}{8} ) =  \dfrac{1}{2}

 \sf \: now

 ( \dfrac{2}{3}  + \dfrac{2}{ {3}^{3} })  +\ffrac {2}{3}^{5}   \:  \sf \: - \: ( \dfrac{4}{ {3}^{2} }+  \dfrac{4}{ {3}^{4} } )

 \sf \dfrac{3}{4}  -  \dfrac{1}{2}

 \sf \:  \dfrac{3}{4}  -  \dfrac{2}{4}  =  \dfrac{1}{4}


ItzArchimedes: Osm !!
Anonymous: Nice!
Glorious31: Good
VishalSharma01: Nice :)
BrainlyPopularman: Awesome
BrainIyMSDhoni: Great :)
ButterFliee: Nice!
Answered by Anonymous
1

Answer:

prefer to the attachment

Attachments:
Similar questions