Math, asked by DragonSlayer76, 1 year ago

The sum of length breadth and height of a cuboid is 19 cm length of it's diagonal is 11cm find the surface area of the cuboid

Answers

Answered by amitnrw
7

Answer:

240 cm^2

Step-by-step explanation:

L + B + H = 19 cm - eq1

L^2 + B^2 + H^2 = 11^2

L^2 + B^2 + H^2 = 121 cm^2 eq2

Squaring eq1

(L + B+H)^2 = 19^2 cm^2

(L+B)^2 + H^2 + 2(L+B)H = 361

L^2 + B^2 + 2LB + H^2 + 2LH + 2BH = 361

L^2 + B^2 + H^2 + 2LB + 2LH + 2BH = 361

Putting value from eq2

121 + 2(LB + LH + BH) = 361

2(LB + LH + BH) = 240 eq 3

Surface area of cuboid = 2(LB + LH + BH)

From eq 3

2(LB + LH + BH) = 240 cm^2

Answered by ⲎⲟⲅȋⲊɑⲛ
148

\fbox{\LARGE{\underline{\underline{\blue{\bf{❥Question࿐}}}}}}

Q. The sum of length breadth and height of a cuboid is 19 cm length of it's diagonal is 11cm find the surface area of the cuboid.

\fbox{\LARGE{\underline{\underline{\purple{\bf{❥Solution࿐}}}}}}

\huge\pink{✎Given,}

\orange{➢ l\:+b\:+h\:=\:19\:cm}

And,

 = >   \sqrt{l {}^{2}  + b {}^{2} + h {}^{2}  }  =  11 \\  = >  \:  \:  \:  l {}^{2}  + b {}^{2}  + h {}^{2}  =  11 {}^{2}

 =  > l {}^{2}  + b {}^{2}  + h {}^{2}  =  \: 121

\huge\pink{✎Required\:to\:find:}

\orange{✮Surface\: area \:of \:the\: cuboid \:➫ \:2(l.b + b.h + h.l)}

Since,

(l + b + h)² = l² + b² + h² + 2(lb + bh + hl)

 =  > 19 {}^{2}  = 121 + 2(lb + bh + hl) \\  =  > 361 = 121 + 2(lb + bh + hl)

\red{➢Surface\:Area\:➫\:2(lb+bh+hl)}

\red{\: \: \: \: \: \: \: \:\: \:➫\:(361–121)\:cm²)}

\red{\: \: \: \: \: \: \: \:\: \: ➫\:240\:cm²}

★ Hence, Surface area of

Cuboid is 240 cm²

\huge\green{✎﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏}

\huge\blue{Thank\:You.!}

Similar questions