The sum of m terms and n terms of an ap is m2n2 then show that it's mth term and nth term are in the ratio (2m-1) : (2n-1)
Answers
Answered by
8
Answer:
Step-by-step explanation:
Sum of m terms of an A.P. = m²
⇒ m² =
Sum of n terms of an A.P.
⇒ n² =
⇒ m/2 [2a + (m -1)d] : n/2 [2a + (n -1)d] = m² : n²
⇒ [2a + md - d] : [2a + nd - d] = m : n
⇒ n( [2a + md - d] ) : m( [2a + nd - d] ) = m : n
⇒ 2an + - nd = 2am + - md
Cancel on both sides
⇒ 2an - 2am = nd - md
⇒ 2a (n -m) = d(n - m)
⇒ 2a = d
m th term = a+(m-1)d
n th term = a+(n-1)d
m : n = (2m - 1) : (2n -1)
m : n = [a + (m - 1)d] : [a + (n - 1)d] = (2m - 1) : (2n -1)
⇒ [a + (m - 1)2a] : [a + (n - 1)2a] = (2m - 1) : (2n -1)
⇒ a [1 + 2m - 2] : a[1 + 2n -2] = (2m - 1) : (2n -1)
⇒ (2m - 1) : (2n -1) = (2m - 1) : (2n -1)
LHS = RHS
Similar questions