the sum of n+1 terms of 1/1+1/1+2+1/1+2+3 is
Answers
Answered by
1
Step-by-step explanation:
1/1+1/(1+2)+1/(1+2+3(+………..+1/(1+2+3+….n)
tn =1/sigma n = 2/n.(n+1)
Now 2/n.(n+1) = A/n + B/(n+1)
2=A.(n+1) + B.n
By compairing both sides
A+B = 0…………(1)
A=2………………….(2)
2+B = 0 => B= -2
tn = 2/n -2/(n+1).
On putting n= 1,2,3,……n.
t1 =2/1 - 2/2
t2=2/2 - 2/3
t3 = 2/3 -2/4
××××××××××××
××××××××÷÷÷÷
tn=2/n - 2/(n+1)
On adding
.t1+t2+t3+…………….+tn = 2/1 -2/(n+1)
= 2.(n+1–1)/(n+1) = 2.n/(n+1) .Answer.
I hope Yoy like it
Similar questions