the sum of n, 2n, 3n terms of an AP are S1, S2 & S3 respectively. Prove that S3 = 3(S2 - S1)
Answers
Answered by
2
Step-by-step explanation:
Sn = n/2 [ 2a + (n-1)d ]
S1 = n/2 [ 2a + (n-1)d ]
S2 = 2n/2 [ 2a + (n-1)d ]
= n [2a + (n-1)d ]
S3 = 3n/2 [ 2a + (n-1)d ]
TO PROVE : S3 = 3(S2 - S1)
S3 = 3(S2 - S1)
S3 = 3S2 - 3S1
3n/2 [ 2a + (n-1)d ] = 3{ n [2a + (n-1)d] }
= -3{ n/2 [ 2a + (n-1)d }
Dividing [ 2a + (n-1)d ] in each terms ,
3n/2 = 3(n) - 3(n/2)
3n/2 = 3n - 3n/2
= (6n/2) - (3n/2)
= (6n - 3n) / 2
3n/2 = 3n/2
LHS = RHS
THEREFORE S3 = 3(S2 - S1) !
HENCE PROVED !
Similar questions