Math, asked by Gauravjha11, 1 year ago

the sum of n ,2n,3n terms of an ap is s1, s2,s3 respectively prove that s3=3(s2-s1)

Answers

Answered by H1a2r3s4h5sharma
359
Hope it helps you......
Attachments:
Answered by DelcieRiveria
249

Answer:

If the sum of n ,2n,3n terms of an AP is s1, s2,s3 , then s3=3(s2-s1)

Step-by-step explanation:

Given: The sum of n ,2n,3n terms of an ap is s1, s2,s3.

To prove: s3=3(s2-s1)

The sum of n, 2n and 3n terms of an AP is

S_1=S_n=\frac{n}{2}[2a+(n-1)d]

S_2=S_{2n}=\frac{2n}{2}[2a+(2n-1)d]

S_3=S_{3n}=\frac{3n}{2}[2a+(3n-1)d]

Simplify R.H.S.

3(S_2-S_1)=3(\frac{2n}{2}[2a+(2n-1)d]-\frac{n}{2}[2a+(n-1)d])

3(S_2-S_1)=3\times \frac{n}{2}\times (2[2a+2dn-d]-[2a+dn-d])

3(S_2-S_1)=\frac{3n}{2}(4a+4dn-2d-2a-dn+d)

3(S_2-S_1)=\frac{3n}{2}(2a+3dn-d)

3(S_2-S_1)=\frac{3n}{2}(2a+(3n-1)d)

3(S_2-S_1)=S_3

Hence proved.

Similar questions