Math, asked by Angela2583, 11 months ago

The sum of n terms of a G.P. whose first terms 1 and the common ratio is 1/2, is equal to 255/128. The value of n is

Answers

Answered by Alcaa
15

Answer:

Value of n = 8 .

Step-by-step explanation:

We are given first term of G.P. , a = 1  and common ratio,  = 0.5 and also sum of n terms of G.P. = 255/128

Sum of n terms of GP formula is given by;

                S_n = \frac{a(1-r^{n}) }{1-r}    where r < 1 .

Putting above values we get,

             ⇒    \frac{255}{128} = \frac{1(1-0.5^{n}) }{1-0.5}  

             ⇒   1 - 0.5^{n}  = \frac{255}{128} * \frac{1}{2}

             ⇒   1 - 0.5^{n}  = \frac{255}{256}  

             ⇒  (\frac{1}{2} )^{n}  = 1 - \frac{255}{256}      ⇒  \frac{1}{2^{n} }   = \frac{1}{256}

                                               ⇒ \frac{1}{2^{n} }   = \frac{1}{2^{8} }

So, comparing both sides we observe that n = 8.

Answered by shrutica24
3

Answer:

8

Step-by-step explanation:

Click on above photo

Hope it will help

MARK ME AS BRAINLIST

FOLLOW ME FOR MORE INTERESTING ANS

Attachments:
Similar questions