the sum of n terms of an ap is 3 n square + 5 n find the AP and find its 15 term
Answers
Answered by
4
Sn = 3n² + 5n
Sn-1 = 3(n-1)² +5(n-1)
= 3( (n)² + (1)² - 2(n)(1) ) +5n -5
= 3(n² +1 -2n ) + 5n -5
= 3n² + 3 - 6n +5n - 5
= 3n² -n -2
An = Sn - S(n-1)
= 3n² + 5n - (3n² -n -2 )
= 3n² + 5n - 3n² +n +2
= 6n +2
A1 = 6(1) +2
= 6 + 2
= 8
A2 = 6(2) +2
= 12 +2
= 14
d = A2 -A1
= 14 -8
= 6
AP will be
8 , 14 ,20 , 26 ...
A15 = a + (15-1)d
= 8 +14(6)
= 8 + 84
= 92
Sn-1 = 3(n-1)² +5(n-1)
= 3( (n)² + (1)² - 2(n)(1) ) +5n -5
= 3(n² +1 -2n ) + 5n -5
= 3n² + 3 - 6n +5n - 5
= 3n² -n -2
An = Sn - S(n-1)
= 3n² + 5n - (3n² -n -2 )
= 3n² + 5n - 3n² +n +2
= 6n +2
A1 = 6(1) +2
= 6 + 2
= 8
A2 = 6(2) +2
= 12 +2
= 14
d = A2 -A1
= 14 -8
= 6
AP will be
8 , 14 ,20 , 26 ...
A15 = a + (15-1)d
= 8 +14(6)
= 8 + 84
= 92
Answered by
1
Sn = 3n² + 5n.
n = 1
Then S1 = 8 = a = 1st term.
n = 2
Then S2 = 22 = a + a2.
a2 = 14.
Therefore d = 14-8 = 6.
AP : 8,14,20,26...................
a15 = a + 14d = 8 + 14(6).
a15 = 92.
Where a = 1st term , a2 = 2nd term ,
d = common difference.
Feel free to message me if you have any doubts.
Wishing you all a HAPPY AND PROSPEROUS NEW YEAR.
Please mark mine as brainliest.
n = 1
Then S1 = 8 = a = 1st term.
n = 2
Then S2 = 22 = a + a2.
a2 = 14.
Therefore d = 14-8 = 6.
AP : 8,14,20,26...................
a15 = a + 14d = 8 + 14(6).
a15 = 92.
Where a = 1st term , a2 = 2nd term ,
d = common difference.
Feel free to message me if you have any doubts.
Wishing you all a HAPPY AND PROSPEROUS NEW YEAR.
Please mark mine as brainliest.
Similar questions