Math, asked by aandikkattil, 4 months ago

the sum of n terms of an AP is 6nsquare+6n, then the fourth term of the series is​

Answers

Answered by Anonymous
32

Given

\sf\longmapsto{S_n = 6n^2 + 6n}⠀....[1]

To find

\sf\longmapsto{Fourth\: term\: of\: the\: series.}

Solution

  • We can write

\tt\longmapsto{S_{n-1} = 6(n - 1)^2 + 6(n - 1)}⠀...[2]

  • We know that

\tt\longmapsto{S_n - S_{n-1} = nth\: term}

Therefore,

\tt\longmapsto{S_4 - S_{4-1} = 4th\: term}

\tt\longmapsto{S_4 - S_3 = 4th\: term}⠀...[3]

From [1], [2] and [3], we get

\small\tt:\implies\: \: \: \: \: \: \: \: {S_4 - S_3 = (6n^2+6n) - [6(n - 1)^2 + 6(n - 1)]}

\small\tt:\implies\: \: \: \: \: \: \: \: {4th\: term = (6n^2 + 6n) - [6(n^2 + 1 - 2n)+ 6n - 6]}

\small\tt:\implies\: \: \: \: \: \: \: \: {4th\: term = (6n^2 + 6n) - (6n^2 + 6 - 12n + 6n -6)}

\small\tt:\implies\: \: \: \: \: \: \: \: {4th\: term = 6n^2 + 6n - 6n^2 + 6n}

\small\tt:\implies\: \: \: \: \: \: \: \: {4th\: term = 6n + 6n}

\tt:\implies\: \: \: \: \: \: \: \: {4th\: term = 12n}

Hence, the fourth term is 12n.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions