Math, asked by atharvsingh18, 10 months ago

the sum of n terms of an ap is (n^(2))/(4)-(25 n)/(4) .find the ap and its 15th term.​

Answers

Answered by littleknowledgE
25

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3 mm}\put(1,1.2){\line(1,0){6.8}}\end{picture}

\underline{\blacksquare\:\:\:\footnotesize{\red{\text{SolutioN:-}}}}

\footnotesize{\text{The given AP series' =}\:a_n=\dfrac{n^2}{4}-\dfrac{25n}{4}  ;}

\footnotesize{\text{Where n is whole number , n=1,2,3,........}}

\footnotesize{\therefore\:\text{first term=}\:a_1=\dfrac{1^2}{4}-\dfrac{25\times1}{4}}

\footnotesize{\implies\:a_1=\dfrac{1}{4}-\dfrac{25}{4}}

\footnotesize{\implies\:a_1=\dfrac{1-25}{4}}

\footnotesize{\implies\:a_1=\dfrac{-24}{4}}

\footnotesize{\implies\:a_1=\dfrac{\cancel{-24}}{\cancel4}}

\footnotesize{\implies\:\red{a_1=-6}}

\footnotesize{\therefore\:\text{second term=}\:a_2=\dfrac{2^2}{4}-\dfrac{25\times2}{4}}

\footnotesize{\implies\:a_1=\dfrac{\cancel4}{\cancel4}-\dfrac{\cancel{50}}{\cancel4}}

\footnotesize{\implies\:a_2=1-\dfrac{25}{2}}

\footnotesize{\implies\:a_2=\dfrac{2-25}{2}}

\footnotesize{\implies\:a_2=\dfrac{-23}{2}}

\footnotesize{\implies\:\red{a_2=-11.5}}

\footnotesize{\therefore\:\text{common difference = d}=a_2-a_1=-11.5-(-6)=-5.5}

\footnotesize{\therefore\:a_3=a_2+d}

\footnotesize{\implies\:a_3=-11.5+(-5.5)}

\footnotesize{\implies\:\red{a_3=-17}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1.2){\line(1,0){6.8}}\end{picture}

\footnotesize{\therefore\:a_{15}=a_1+(15-1)d}

\footnotesize{\implies\:a_{15}=-6+(14)(-5.5)}

\footnotesize{\implies\:a_{15}=-6-77}

\footnotesize{\implies\:\red{a_{15}=-83}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1.2){\line(1,0){6.8}}\end{picture}

\footnotesize{\bf{\therefore\:\text{The series is ;  -6 ,-11.5,-17,........}}}

\footnotesize{\bf{\therefore\:\text{The 15'th term is = -83}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3 mm}\put(1,1.2){\line(1,0){6.8}}\end{picture}

Similar questions