Math, asked by Sabeeha, 1 year ago

The sum of n terms of the series 4+44+444+.... is ?

Answers

Answered by Ekman
183
4+44+444+....... upto n terms.
4(1+11+111+........upto n terms)
4/9(9+99+999+.........upto n terms)
4/9[(10-1)+(10²-1)+...... upto n terms]
4/9[10+
10²+.........+10ⁿ}-(1+1+1+....n times)]
(4/9) { 10 [ ( 10ⁿ - 1 ) / ( 10 - 1 ) ] - n(1) }
(4/9) [ (10/9) ( 10ⁿ - 1 ) - n ]...................

Ekman: try to solve it in ur notebook, if problem still exists, then i will ready to help
Ekman: see, in: 4/9[10+10²+.........+10ⁿ}-(1+1+1+....n times)]
Ekman: (1+1+1+....n times) gives n*1 got it?
Ekman: in : (4/9) { 10 [ ( 10ⁿ - 1 ) / ( 10 - 1 ) ] - n(1) } step
Ekman: in: 4/9[10+10²+.........+10ⁿ}-(1+1+1+....n times)] step
Ekman: [10+10²+.........+10ⁿ} forms gp
Ekman: and sum of gp is: rⁿ-1/r-1, where r is first term of gp
Ekman: thank u very much asking help
Ekman: any other query, please do ask.....
Sabeeha: thanx 4 ur help
Answered by rekhaverma02021975
50

Answer:

4 + 44 + 444 + ... to n terms

= 4 [ 1 + 11 + 111 + ... to n terms ]

= (4/9) [ 9 + 99 + 999 + ... to n terms ]

= (4/9) [ (10 - 1) + (10² - 1) + (10³ - 1) + ... + (10ⁿ - 1) ]

= (4/9) [ ( 10 + 10² + 10³ + ... + 10ⁿ ) - ( 1 + 1 + 1 + ... n times ) ]

= (4/9) { 10 [ ( 10ⁿ - 1 ) / ( 10 - 1 ) ] - n(1) }

= (4/9) [ (10/9) ( 10ⁿ - 1 ) - n ] ................................. Ans-

Similar questions