Math, asked by Anonymous, 8 months ago

The sum of n terms of two arithmetic progressions are in the ratio (3n + 8) : (7n + 15). Find the ratio of their 12th terms


amitnrw: 7/16

Answers

Answered by Anonymous
28

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ ratio \ of \ 12^{th} \ term \ of \ both \ the}

\sf{arithmetic \ progressions \ is \ 7:16.}

\sf\orange{Given:}

\sf{\implies{The \ sum \ of \ n \ terms \ of \ the \ two}}

\sf{arithmetic \ progressions \ are \ in \ the \ ratio}

\sf{(3n+8) \ : \ (7n+15).}

\sf\pink{To \ find:}

\sf{The \ ratio \ of \ their \ 12^{th} \ terms.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{For \ first \ AP,}

\sf{Let, \ First \ term=a_{1} \ and \ Common \ difference=d_{1}}

\sf{\therefore{12^{th} \ term \ is \ 1t_{12}}}

\sf{\underline{\underline{\therefore{1t_{12}=a_{1}+11d_{1}...(1)}}}}

\sf{For \ second \ AP,}

\sf{Let, \ First \ term=a_{2} \ and \ Common \ difference=d_{2}}

\sf{\therefore{12^{th} \ term \ is \ 2t_{12}}}

\sf{\underline{\underline{\therefore{2t_{12}=a_{2}+11d_{2}...(2)}}}}

________________________________

\sf{Now, \ Let \ the \ sum \ of \ n \ terms \ of two \ terms}

\sf{of \ two \ arithmetic \ progressions \ be \ 1S_{n}}

\sf{and \ 2S_{2} \ respectively.}

\boxed{\sf{S_{n}=\frac{n}{2}[2a+(n-1)d]}}

\sf{According \ to \ the \ given \ condition.}

\sf{\frac{1S_{1}}{2S_{2}}=\frac{3n+8}{7n+15}}

\sf{\therefore{\frac{\frac{n}{2}[2a_{1}+(n-1)d_{1}]}{\frac{n}{2}[2a_{2}+(n-1)d_{2}]}=\frac{3n+8}{7n+15}}}

\sf{\therefore{\frac{2a_{1}+(n-1)d_{1}}{2a_{2}+(n-1)d_{2}}=\frac{3n+8}{7n+15}}}

\sf{\therefore{\frac{2[a_{1}+\frac{(n-1)d_{1}}{2}]}{2[a_{2}+\frac{(n-1)d_{2}}{2}]}=\frac{3n+8}{7n+15}}}

\sf{\therefore{\frac{a_{1}+\frac{(n-1)d_{1}}{2}}{a_{2}+\frac{(n-1)d_{2}}{2}}=\frac{3n+8}{7n+15}}}

\sf{Put \ n=23, \ we \ get}

\sf{\frac{a_{1}+\frac{(23-1)d_{1}}{2}}{a_{2}+\frac{(23-1)d_{2}}{2}}=\frac{3(23)+8}{7(23)+8}}

\sf{\therefore{\frac{a_{1}+\frac{22d_{1}}{2}}{a_{2}+\frac{22d_{2}}{2}}=\frac{69+8}{161+15}}}

\sf{\therefore{\frac{a_{1}+11d_{1}}{a_{2}+11d_{2}}=\frac{77}{176}}}

\sf{\underline{\underline{\therefore{\frac{a_{1}+11d_{1}}{a_{2}+11d_{2}}=\frac{7}{16}...(3)}}}}

\sf{...from \ (1), \ (2) \ and \ (3)}

\sf{\frac{1t_{12}}{2t_{12}}=\frac{7}{16}}

\sf\purple{\tt{\therefore{The \ ratio \ of \ 12^{th} \ term \ of \ both \ the}}}

\sf\purple{\tt{arithmetic \ progressions \ is \ 7:16.}}

Answered by ItzRadhika
9

Refers to attachment ~

Attachments:
Similar questions