Math, asked by rajveer62, 10 months ago

The sum of numerator & denominator at
a fraction is 18. If the denominator increased by 2
the fraction reduces to 1/3.Find the Fraction​

Answers

Answered by BrainlyQueen01
14

Answer:

\boxed{\red{\bf Fraction = \dfrac{5}{13}}}

Step-by-step explanation:

Given that :

  • The sum of numerator and denominator of a fraction is 18.
  • If the denominator increased by 2
  • the fraction reduces to 1/3.

To find :

  • The fraction.

Solution :

Let the numerator and denominator of the fraction be x and y respectively.

\boxed{\bf Original \: fraction = \dfrac{x}{y}}

According to the question,

The sum of numerator and denominator of the fraction is 18.

\implies \sf x + y = 18 \\\\\implies \sf x = 18 - y \: \: \: \dots (i)

Also,

If the denominator increased by 2

the fraction reduces to 1/3.

Equation :

\implies \sf \frac{x}{y+2} = \frac{1}{3} \\\\\implies \sf 3x = y + 2 \\\\\implies \sf 3(18-y) = y + 2

[ Using equation (i) ]

\sf \implies 54 - 3y = y + 2\\\\\implies \sf - 3y - y = 2 - 54 \\\\\implies \sf - 4y = - 52 \\\\\implies \sf y = \frac{-52}{-4} \\\\\implies \sf y = 13

Now, substituting the value of y in (i),

\sf \implies x = 18 - y \\\\\implies \sf x = 18 - 13 \\\\\implies \sf x = 5

Thus, original fraction = \sf \dfrac{x}{y}

                                    = \sf \dfrac{5}{13}

Hence, the original fraction is 5/13.

Answered by sanchitachauhan241
7

{\sf{\underline{\underline{\pink{Solution:}}}}}

\boxed{\pink{\bf Fraction = \dfrac{5}{13}}}

Step-by-step explanation:

\sf\purple{Given \ that:}

  • \sf\orange{The \  sum \ of \  numerator \  and \ denominator \  of \  a \  fraction \  is \  18.}

  • \sf\green{If \ the \  denominator\  increased \  by \  2}

  • \sf\green{The \  fraction \  reduces \  to} \frac{1}{3}

\sf\pink{To \  find :}

\sf\green{The \  fraction}

{\sf{\underline{\underline{\pink{Answer:-}}}}}

\sf\pink{Let \ the \  numerator \ and \  denominator \  of \ the \  fraction \  be x \  and \  y \ respectively.}

★ \boxed{\bf Original \:fraction = \dfrac{x}{y}}

\sf\green{According \  to \  the \  question,}

\sf\red{The \ sum \  of \ numerator \  and \  denominator \  of \ the \ fraction \  is \  18.}

\begin{gathered}\implies \sf x + y = 18 \\\\\implies \sf x = 18 - y \: \: \: \dots (i)\end{gathered}

\sf\green{Also,}

\sf\green{If \  the \  denominator \  increased \  by \  2}

\sf\pink{the \  fraction \  reduces \ to} \frac{1}{3} .

\sf\green{Equation :}

\begin{gathered}\implies \sf \frac{x}{y+2} = \frac{1}{3} \\\\\implies \sf 3x = y + 2 \\\\\implies \sf 3(18-y) = y + 2\end{gathered}

\sf\green{[ Using \ equation \  (i) ]}

\begin{gathered}\sf \implies 54 - 3y = y + 2\\\\\implies \sf - 3y - y = 2 - 54 \\\\\implies \sf - 4y = - 52 \\\\\implies \sf y = \frac{-52}{-4} \\\\\implies \sf y = 13\end{gathered}

\sf\green{Now, \ substituting \  the \  value \ of \  y \  in \  (i),}

\begin{gathered}\sf \implies x = 18 - y \\\\\implies \sf x = 18 - 13 \\\\\implies \sf x = 5\end{gathered}

\sf\green{Thus, \ original \ fraction \ =} \sf \dfrac{x}{y}

= \sf \dfrac{5}{13}

\sf\pink{Hence, \ the \ original \  fraction \  is} \frac{5}{13.}

Similar questions