Math, asked by gangadhar9205, 9 months ago

The sum of numerator and denominator of a fraction is greater by 1 tan thrice the numerator if numerator is decreased by 1 then the fraction reduced to 1/3 . Find the fraction

Answers

Answered by ButterFliee
123

GIVEN:

  • The sum of numerator and denominator of a fraction is greater by 1 than thrice the numerator.
  • Numerator is decreased by 1 then the fraction reduced to 1/3.

TO FIND:

  • What is the fraction ?

SOLUTION:

Let the fraction be x/y

CASE:- 1)

  • The sum of numerator and denominator of a fraction is greater by 1 than thrice the numerator.

According to question:-

\sf{\longmapsto x + y = 3x +1 }

\sf{\longmapsto y = 3x -x+1}

\bf{\longmapsto y = 2x +1...1) }

CASE:- 2)

  • Numerator is decreased by 1 then the fraction reduced to 1/3.

According to question:-

\sf{\longmapsto \dfrac{x-1}{y} = \dfrac{1}{3}}

\sf{\longmapsto 3(x-1) = y}

\sf{\longmapsto 3x -3 = y }

\bf{\longmapsto 3x -y = 3....2) }

Put the value of 'x' from equation 1 in equation 2

\sf{\longmapsto 3x -(2x +1) = 3 }

\sf{\longmapsto 3x -2x -1 = 3 }

\sf{\longmapsto x = 3+1 }

\bf{\longmapsto x= 4 }

Put the value of 'x' in equation 1)

\sf{\longmapsto y = 2 \times 4 +1}

\sf{\longmapsto y = 8+1 }

\bf{\longmapsto y = 9 }

  • NUMERATOR = x = 4
  • DENOMINATOR = y = 9

\large{\boxed{\bf{\star \: FRACTION = \dfrac{x}{y} = \dfrac{4}{9} \: \star}}}

Hence, the fraction become is 4/9

______________________


Anonymous: Perfect :P
BrainlyConqueror0901: well done
Answered by Anonymous
415

UR QUESTION:-

\huge{\mathbf {Q.}}The sum of numerator and denominator of a fraction is greater by 1 tan thrice the numerator if numerator is decreased by 1 then the fraction reduced to 1\3. Find the fraction

UR ANSWER ✓

\Large\underline\bold{GIVEN,}

The sum of numerator and denominator of a fraction is greater by 1 than thrice the numerator. Numerator is decreased by 1 then the fraction reduced to 1\3

\Large\underline\bold{TO\:FIND,}

 \sf\dashrightarrow  FRACTION

\Large\underline\bold{SOLUTION,}

\sf\dashrightarrow\:let\:the\:fraction\:be\: \dfrac{a}{b}

\Large\underline\bold{NOW,,}

\sf\underline\bold{taking\:2\:cases}

\large {\fbox{CASE:-1}}

\sf\bold{we\:know,}

the sum of both numerator and denominator is greater by 1 and then thrice the numerator

\Large\underline\bold{ATQ.........i.e,....\:according\:to\:the\:question}

\sf{\implies a+b=3a+1}

\sf{\implies b=3a-a+1}

\sf{\implies b=2a+1...........eq^1}

\large{\fbox{CASE:-2}}

 \sf\therefore if \:numerator\:is\:decreased\:by\:1\:then\:the\:fraction\:reduced\:to\:\dfrac{1}{3}

\Large\underline\bold{ATQ.........i.e,.... according\:to\:the\:question}

\sf{\implies \dfrac{a-1}{b} = \dfrac{1}{3}}

\sf{\implies 3(a-1) =b}

\sf{\implies 3a-3=b}

\sf{\implies 3a-b=3...........eq^2}

 \sf\therefore substitute\:value\:of\:b\:in\:eq^2

\sf{\implies 3a-(2a +1)=3}

\sf{\implies 3a-2a-1 =3}

\sf{\implies a=3+1}

\sf{\implies a=4}

\sf {\fbox{a=4}}

\sf\therefore substitute\:value\:of\:a\:in\:eq^1

\sf{\implies b=2a+1...........eq^1}

\sf{\implies b=2 \times 4+1}

\sf{\implies b=8+1}

\sf{\implies b=9}

\sf {\fbox{b=9}}

\large\therefore \dfrac{a}{b} = \dfrac{4}{9}

\sf\therefore \dfrac{numerator}{denominator} = \dfrac{4}{9}


Anonymous: Awesome :D
BrainlyConqueror0901: splendid
Similar questions