Math, asked by sunildatt753, 10 months ago

The sum of numerator and denominator of a fraction is 3 less than twice the denominator.if each numerator and denominator is decreased by 1, the fraction becomes 1/2. find the fraction

Answers

Answered by ItzMysticalBoy
31

\huge {\red {\mathfrak{Question :-}}}

  • The sum of numerator and denominator of a fraction is 3 less than twice the denominator. If each numerator and denominator is decreased by 1, the fraction becomes \dfrac {1}{2}. Find the fraction.

\huge {\red {\mathfrak{Solution:-}}}

\underline{\bold{To\:Find:}}

  • The fraction .

Let the numerator be x.

Then, the denominator be y.

Sum of numerator and denominator of the fraction is 3 less than twice the denominator.

\therefore {\sf{x+y=2y-3}}

\hookrightarrow x + y = 2y - 3 \\  \\ \hookrightarrow x = 2y - 3 - y \\  \\  \hookrightarrow x = y - 3\:\:\:\:\:\: ....(i)

If each numerator and denominator is decreased by 1 , the fraction becomes \bf{\frac{1}{2}}

\therefore{\sf{\dfrac {x-1}{y-1}=\dfrac{1}{2}}}

 \hookrightarrow  \frac{x - 1}{y - 1}  =  \frac{1}{2}  \\  \\ \hookrightarrow 2(x - 1) = 1(y - 1) \\  \\  \hookrightarrow 2x - 2 = y - 1 \\   \\  \sf{By  \:substituting \:  the  \: value \:  of  \: equation   \: (i)} :   \\\hookrightarrow 2x - 2 = y - 1 \\  \\  \hookrightarrow 2(y - 3)-2= y - 1 \\  \\  \hookrightarrow \ 2y - 6-2 = y - 1 \\  \\\hookrightarrow 2y - 8= y - 1  \\  \\\hookrightarrow 2y-y=-1+8 \\  \\\hookrightarrow y = 7

Now we find the numerator (Value of x) :

 \hookrightarrow x = y - 3 \\  \\ \hookrightarrow x =7- 3 \\  \\  \hookrightarrow x = 4

\green{\therefore{\tt {The\:fraction\:is\:\dfrac {4}{7}.}}}

\rule {197}{2}

Answered by Anonymous
29

Given :

  • The sum of numerator and denominator of a fraction is 3 less than twice the denominator.
  • If each numerator and denominator is decreased by 1, the fraction becomes 1/2.

To Find :

  • The fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \sf{\dfrac{x}{y}}

Case 1 :

The sum of the numerator and denominator is 3 less than twice the denominator.

Equation :

\longrightarrow \sf{x+y=2y-3}

\longrightarrow \sf{x=2y-y-3}

\sf{x=y-3\:\:\:(1)}

Case 2 :

The numerator and denominator both are decreased by 1, then the fraction becomes 1/2.

Numerator = (x-1)

Denominator = (y-1)

Equation :

\longrightarrow \sf{\dfrac{(x-1)}{(y-1)}\:=\:\dfrac{1}{2}}

\longrightarrow \sf{2(x-1) =1(y-1) }

\longrightarrow \sf{2x-2=y-1}

\longrightarrow \sf{2x-y=-1+2}

\longrightarrow \sf{2(y-3)-y=1}

\longrightarrow \sf{2y-6-y=1}

\longrightarrow \sf{2y-y=1+6}

\longrightarrow \sf{y=7}

Substitute, y = 7 in equation (1),

\longrightarrow \sf{x=y-3}

\longrightarrow \sf{x=7-3}

\longrightarrow \sf{x=4}

\large{\boxed{\bold{Numerator\:=\:x\:=\:4}}}

\large{\boxed{\bold{Denominator\:=\:y\:=\:7}}}

\large{\boxed{\bold{Fraction\:=\:\dfrac{x}{y}\:=\:\dfrac{4}{7}}}}

Similar questions