Physics, asked by yy352, 1 month ago

The sum of present Ages of Rohan and Mohan is 105 years after 7 years their ages will be in the ratio 7:10.
Find the present ages of Rohan and mohan

Answers

Answered by SparklingBoy
203

\large \clubs \:  \bf Given  :  -

  • The sum of the present ages of Rohan and Mohan is 105 years.

  • After 7 years the ratio of their ages that time will be 7 : 10 respectively.

----------------------

\large \bf \clubs \: To \: Find :-

  • Their Present Ages

----------------------

\large \bf \clubs \: Solution :-

Let ,

  • Present age of Rohan = x years

  • Present age of Sohan = y years

We Have,

\sf  \text {x + y = 105 }\\

\bf :\longmapsto x = 105 - y \: \: - - - - (1)

After 7 Years

  • Age of Rohan = (x + 7) years

  • Age of Mohan = (y + 7) years

According To Question  :

\sf\dfrac{\text x + 7}{ \text y + 7} = \frac{7}{10} \\

:\longmapsto \sf10( \text{ x + 7) = 7(y + 7)} \\

  :\longmapsto \sf10\text{x + 70 = 7y + 49 }\\

:\longmapsto \bf10x - 7y = - 21 \: \: -  -  - - (2) \\

Putting Value of (1) in (2) :

:\longmapsto10(105 -\text y)  - 7\text y =  - 21 \\

:\longmapsto1050 - 10\text y - 7\text y =  - 21 \\

:\longmapsto - 17\text y =  - 21 - 1050 \\

:\longmapsto  \cancel- 17\text y =   \cancel- 1071 \\

:\longmapsto\text y =  \cancel \dfrac{1071}{17}

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf y = 63} }}}

Putting Value of y in (1) :

:\longmapsto\text x = 105 - 63

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf x = 42} }}}

Hence,

 \pink{\begin{cases} \bf Age \: of \:  Rohan   = 42 \: years \\  \\ \bf  Age \: of  \:  Mohan  = 63 \:years\end{cases}}

----------------------

Answered by Anonymous
171

Answer:

Given :-

  • The sum of present age of Rohan and Mohan is 105.
  • After 7 years their ages will be in the ratio of 7 : 10.

To Find :-

  • What is the present age of Rohan and Mohan.

Solution :-

Let,

\mapsto \bf Present\: Age\: of\: Rohan =\: a\: years

\mapsto \bf Present\: Age\: of\: Mohan =\: b\: years

Now,

\bigstar Sum of present age of Rohan and Mohan is 105.

\implies \sf a + b =\: 105

\implies \sf\bold{\purple{a =\: 105 - b\: ------\: (Equation\: No\: 1)}}\\

Again,

\bigstar After 7 years their ages will be :

\leadsto \sf Age\: of\: Rohan =\: (a + 7)\: years

\leadsto \sf Age\: of\: Mohan =\: (b + 7)\: years

\bigstar After 7 years their ages will be in the ratio of 7 : 10.

\implies \bf (a + 7) : (b + 7) =\: 7 : 10

\implies \sf \dfrac{(a + 7)}{(b + 7)} =\: \dfrac{7}{10}

By doing cross multiplication we get,

\implies \sf 7(b + 7) =\: 10(a + 7)

\implies \sf 7b + 49 =\: 10a + 70

\implies \sf 7b - 10a =\: 70 - 49

\implies \sf\bold{\purple{7b - 10a =\: 21\: ------\: (Equation\: No\: 2)}}\\

Now, by putting the value of a in the equation no 2 we get,

\implies \sf 7b - 10a =\: 21

\implies \sf 7b - 10\{105 - b\} =\: 21

\implies \sf 7b - 1050 + 10b =\: 21

\implies \sf 7b + 10b =\: 21 + 1050

\implies \sf 17b =\: 1071

\implies \sf b =\: \dfrac{\cancel{1071}}{\cancel{17}}

\implies \sf b =\: \dfrac{63}{1}

\implies \sf\bold{\pink{b =\: 63}}

Again, by putting b = 63, in the equation no 1 we get,

\implies \sf a =\: 105 - b

\implies \sf a =\: 105 - 63

\implies \sf\bold{\pink{a =\: 42}}

Hence, we get the required present age of Rohan and Mohan is :

\longrightarrow \tt\bold{\red{Present\: Age_{(Rohan)} =\: 42\: years}}

\longrightarrow \tt\bold{\red{Present\: Age_{(Mohan)} =\: 63\: years}}

{\small{\bold{\underline{\therefore\: The\: present\: age\: of\: Rohan\: and\: Mohan\: are\: 42\: years\: and\: 63\: years\: respectively\: .}}}}

Similar questions