Math, asked by KBharat, 11 months ago

The sum of radii of two circles is 17 cm and the difference of
circumferences is 44 cm. Find the two radii.

Answers

Answered by Shreya091
77

\huge{\bf{\underline{\underline{AnSwEr:-}}}}

\large\sf\therefore\green{r_1= 12cm \: and \: r_2= 5cm }

\large{\sf{\underline{\underline{Given:-}}}}

\large\bf\ r_1+r_2= 17cm

\large\bf\ 2πr_1-2πr_2 = 44cm

\large{\sf{\underline{\underline{To \: find:-}}}}

\large\bf\ r_1 \: and \:  r_2

\large{\sf{\underline{\underline{SoluTion:-}}}}

\large\tt\to\ r_1+ r_2 = 17 ----->(eq.1) \\ \\ \large\tt\to\ 2πr_1- 2πr_2 =44 \\ \\ \large\tt\to\ 2π(r_1 - r_2) =44 \\ \\ \large\tt\to\ 2 \times\frac{22}{7}(r_1-r_2)=44 \\ \\ \large\tt\to\ (r_1-r_2) = \frac{ 44 \times\ 7}{ 2 \times\ 22} \\ \\ \large\tt\to\ (r_1-r_2) = 7-----(eq.2)

\large\sf\therefore\purple{By \: using \: eq.1 \: and \: eq.2 \: We \: get;}

\large\tt\to\ 2r_1= 24 \\ \\ \large\tt\to\  r_1= \frac{24}{2}= 12

\large\sf\therefore\purple{ Putting \: the \: value \: of \: r_1 \: in \: eq.1}

\large\tt\to\ r_1-r_2 =17 \\ \\ \large\tt\to\ 12-r_2 =17 \\ \\ \large\tt\to\  r_2 =17-12 \\ \\ \large\tt\to\ r_2= 5

Answered by Anonymous
3

Hope it helps you.... (✿❛◡❛)ヾ(❀╹◡╹)ノ゙

Attachments:
Similar questions