Math, asked by WildCat7083, 2 months ago

The sum of reciprocals of rehman's ages 3 years ago and 5 years now is 1 by 3 . find his present age.

A sort of fre e points. But solve the answer properly or else I'll re port it.

\large \bold{@WildCat7083}

Answers

Answered by Potato95
184

Question

The sum of reciprocals of rehman's ages 3 years ago and 5 years now is 1 by 3 . find his present age.

Solution :

\longmapsto\tt{Let\:present\:age\:of\:Rehman=x}

\longmapsto\tt{Before\:3\:years=x-3}

\longmapsto\tt{After\:5\:years=x+5}

A.T.Q :

\longmapsto\tt\bf{\dfrac{1}{x-3}+\dfrac{1}{x+5}=\dfrac{1}{3}}

\longmapsto\tt{\dfrac{x-3+x+5}{(x-3)\:\:(x+5)}=\dfrac{1}{3}}

\longmapsto\tt{\dfrac{2x+2}{{x}^{2}+5x-3x-15}=\dfrac{1}{3}}

Cross Multipy :

\longmapsto\tt{3(2x+2)={x}^{2}+5x-3x-15}

\longmapsto\tt{6x+6={x}^{2}+5x-3x-15}

\longmapsto\tt{{x}^{2}+5x-6x-3x-15-6=0}

\longmapsto\tt{{x}^{2}-1x-3x-21=0}

\longmapsto\tt\bf{{x}^{2}-4x-21=0}

By Splitting Middle Term :

 \longmapsto\tt{{x}^{2}-(7x-3x)-21=0}

\longmapsto\tt{{x}^{2}-7x+3x-21=0}

\longmapsto\tt{x(x-7)+3(x-7)=0}

\longmapsto\tt{(x-7)\:\:(x+3)=0}

  • x = 7
  • x = 7x = -3

Age can't be negative.

So , The Present Age of Rehman is 7 years .

Answered by ⲘⲓssRσѕє
5

Answer:

\huge\fcolorbox{blue}{pink}{☃αղsաҽɾ☃}

 \bold{⇒ \: let \: rehman's \: current \: age = x} \\  \\  \bold{⇒ \: rehman's \: age \: 3 \: years \: ago = x - 3} \\  \\  \bold{⇒ \: rehman's \: age \: 5 \: years  \: from \: now = x + 5}

 \huge \bold  \red{Given \: that :  - }

 \bold{The \:  sum \:  of \:  reciprocals \:  of \:  rehman's} \\   \bold { ages \:  3  \: years \:  ago \:  and  \: 5 years \:  now \:  is  \frac{1}{3} }

⇒ \frac{1}{x - 3}  +  \frac{1}{x + 5}  =  \frac{1}{3}  \\  \\ ⇒ \:  \frac{ x + 5  \: + x - 3 }{( x  - 3)(x + 5)} =   \frac{1}{3}  \\  \\ ⇒ \:  \frac{2x + 2}{(x - 3)(x + 5)}  =  \frac{1}{3}  \\  \\ ⇒ \: (2x + 2) \times 3 = 1 \times (x - 3)(x + 5) \\  \\ ⇒ \: 6x + 6 = x(x + 5) - 3(x + 5) \\  \\ ⇒ \: 6x + 6 =  {x}^{2}  + 5x - 3x - 15 \\  \\ ⇒ \: 0 =  {x }^{2}  + 5x - 3x - 15 - 6x - 6 \\  \\ ⇒ \: 0 =  {x}^{2}  + 5x - 3x - 6x - 15 \\  \\ ⇒ \: 0 =  {x}^{2}  - 4x - 21 \\  \\ ⇒ \:  {x}^{2}  - 4x - 21 = 0

 \bold{we \: factorize \: by  \: splitting \: the \: middle \: term}

 ⇒ \: {x}^{2}  + 3x - 7x - 21 = 0 \\  \\⇒ \: x(x + 3)  - 7(x + 3) = 0 \\  \\ ⇒ \: (x + 3)(x - 7) = 0

⇒ \: x - 7 = 0 \\  \\ ⇒ \: x = 7

⇒ \: x + 3 = 0 \\  \\ ⇒ \: x =  - 3

 \bold{so \: x = 7 \: and \: x =  - 3} \\  \\  \bold{but \: x \: cannot \: be \: in \: negative} \\  \\

 \bold{so \: rehaman's \: current \: age \: is \: 7 \: years}

Similar questions