Math, asked by pakalaramalakshmio, 10 months ago

the sum of roots of
 \sqrt{3}  x + 6 \sqrt{3x + 9 = 0}

Answers

Answered by Sharad001
65

Question :-

Find the sum of roots of ,

 \sqrt{3} x + 6 \sqrt{3x + 9 = 0}

Answer :-

 \boxed{sum \: of \: roots \:  =  \frac{1}{4} }

To find :-

sum of roots .

Formula used :-

To find the sum of roots ,we applied

  \small \boxed{\bf{sum \: of \: roots \:  =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }}}

____________________________

Step - by - step explanation :-

According to the question,

\sqrt{3} x + 6 \sqrt{3x + 9 } = 0 \:  \\

We can write it,

 \sqrt{3} x =  - 6 \sqrt{3x + 9}

Now ,squaring on both sides ,

 {( \sqrt{3} x)}^{2}  =  {( - 6 \sqrt{3x + 9}) }^{2}  \\  \\ \implies \:  3 {x}^{2}  = 36(3x + 9) \\  \\  \implies \:   {x}^{2}  = 12(3x + 9) \\  \\  \implies \:  {x}^{2}  = 36x + 144 \\  \\  \implies \: \boxed{  {x}^{2}  - 36x - 144 = 0}

Now ,

Applied the given formula ,

Then we get sum of roots ,

 \: sum \: of \: roots \:  \implies \:   \frac{ - ( - 36)}{144}  \\  \\  \implies \:  \frac{1}{4}  \\

_____________________________

Similar questions