Math, asked by arvind5009, 1 year ago

the sum of series 31+ 33+...+53

Answers

Answered by anuragkumar1067
6
The series 31+33...+53  can be expressed as sigma notation ∑n=1103n∑n=1103n . This expression is read as the sum of 3n3n as nngoes from 11 to 10
Answered by mysticd
23

Answer:

31+33+...+53 = 504

Step-by-step explanation:

Given series 31+33+...+53

is an A.P

First term (a) = 31

 common \: difference \:(d)=a_{2}-a_{1}\\=33-31\\=2

n^{th} \:term =a_{n}=53

\implies a+(n-1)d=53

\implies 31+(n-1)2=53

\implies (n-1)2=53-31

\implies (n-1)2=22

\implies (n-1)=\frac{22}{2}

\implies n= 11+1

\implies n = 12

Now,\\Sum \: of \: n \: terms (S_{n})= \frac{n}{2} (a+a_{n})

\implies S_{12}=\frac{12}{2}(31+53)\\=6\times 84\\=504

Therefore,.

31+33+...+53 = 504

•••♪

Similar questions