Math, asked by Sherin5793, 1 month ago

The sum of series is√3+3√2+6√3+. To 16th term is

Answers

Answered by DeeznutzUwU
0

Answer:

1007769\sqrt{2} - 1007769\sqrt{3}

Step-by-step explanation:

By looking at the series we can tell that it is a GP

Where a = \sqrt{3}, r = \sqrt{6}

We know that sum of GP = S_n = \frac{a(r^{n}-1) }{r-1}

Sum of 16 terms of the GP = S_{16} = \frac{\sqrt{3} (\sqrt{6} ^{16} -1)}{\sqrt6 - 1}

S_{16} = \sqrt{3} \frac{(\sqrt{6}^{8})^{2}  - (1^{8})^{2}    }{\sqrt{6}-1 }

S_{16} = \sqrt{3} \frac{[(\sqrt{6} ^{8} -1^{8})( \sqrt{6} ^{8} +1^{8})]}{\sqrt{6} -1}                                        (a^{2} -b^{2} = (a+b)(a-b))

We'll keep applying the same formula till we get \sqrt{6} -1 in the numerator

S_{16} = \sqrt{3} \frac{(\sqrt{6}-1)(\sqrt{6}+1)(\sqrt{6}^{2} +1^{2})(\sqrt{6}^{4} +1^{4})(\sqrt{6}^{8} +1^{8} )}{(\sqrt{6}-1)}

S_{16} = \sqrt{3}(\sqrt{6}+1)(\sqrt{6}^{2} +1^{2})(\sqrt{6}^{4} +1^{4})(\sqrt{6}^{8} +1^{8} )

S_{16}= \sqrt{3} (\sqrt{6}+1) (6+1) (36+1) (1296+1)

S_{16} = \sqrt{3} (\sqrt{6} -1)(7)(37)(1297)

S_{16} = \sqrt{3} (\sqrt{6} -1)(335923)

S_{16} = (3\sqrt{2} - \sqrt{3}) (335923)

S_{16} = 1007769\sqrt{2} - 1007769\sqrt{3}

Similar questions