Math, asked by bestharsh2004, 4 months ago

the sum of squares of 2 +ve integers is 106 .sum of larger integer and thrice small integer is 24 . find the nos (use only 1 variable)

Answers

Answered by mathdude500
1

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

  • Sum of larger integer and thrice small integer is 24.

So,

  • Let smaller integer = 'x'.

So,

  • Largest integer = 24 - 3x

  \large \underline{\tt \:  \blue{ According  \: to  \: statement }}

\tt \longmapsto\: {x}^{2}  +  {(24 - 3x)}^{2}  = 106

\tt \longmapsto\: {x}^{2}  + 576 +  {9x}^{2}  - 144x = 106

\tt \longmapsto\:10 {x}^{2}  - 144x + 470 = 0

\tt \longmapsto\: 5{x}^{2}  - 72x + 235 = 0

\tt \longmapsto\:5 {x}^{2}  - 25x - 47x + 235 = 0

\tt \longmapsto\:5x(x - 5) - 47(x - 5) = 0

\tt \longmapsto\:(x - 5)(5x - 47) = 0

\bf\implies \:x = 5 \:  \: or \: x \:  = \dfrac{47}{5} (rejected)

\rm :\implies\:\:\boxed{ \green{ \bf \: x = 5}}

So,

\begin{gathered}\begin{gathered}\bf \:numbers \: are -  \begin{cases} &\tt{x = 5} \\ &\tt{24 - 3x = 24 - 15 = 9} \end{cases}\end{gathered}\end{gathered}

Similar questions