Math, asked by arpithadegang49, 3 months ago

the sum of squares of two consecutive odd integers is 290 then find those integers​

Answers

Answered by Anonymous
16

\huge\sf\mathbb\color{yellow}\underline{\colorbox{black}{ solution....༊}}

\orange{ʟᴇᴛ  \: x \:  ᴀɴ \:  ᴏᴅᴅ \:  ᴘᴏsɪᴛɪᴠᴇ  \: ɪɴᴛᴇɢᴇʀ }

\red{ᴀᴄᴄᴏʀᴅɪɴɢ  \: ᴛᴏ  \: ǫᴜᴇsᴛɪᴏɴ }

\bold\purple{ \:  {x}^{2} + {(x + 2)}^{2}  =290\: }

\purple{2 {x}^{2} + 4x  - 286 = 0 }

\purple{ {x}^{2}  + 2x - 143 = 0}

\purple{ {x}^{2}  + 13x - 11x  - 143 = 0}

\purple{ \:(x+13)(x−11)=0 \: }

\purple{ \: x=11 as \:  x \:  is \:  positive\: }

\mathfrak\red{ \:  \:  \:Hence \:  required  \: integers \:  are \:  11  \: and  \: 13</p><p>}

Answered by anviyadav077
18

\huge\sf\mathbb\color{yellow}\underline{\colorbox{black}{ solution....༊}}

\orange{ʟᴇᴛ  \: x \:  ᴀɴ \:  ᴏᴅᴅ \:  ᴘᴏsɪᴛɪᴠᴇ  \: ɪɴᴛᴇɢᴇʀ }

\red{ᴀᴄᴄᴏʀᴅɪɴɢ  \: ᴛᴏ  \: ǫᴜᴇsᴛɪᴏɴ }

\bold\purple{ \:  {x}^{2} + {(x + 2)}^{2}  =290\: }

\purple{2 {x}^{2} + 4x  - 286 = 0 }

\purple{ {x}^{2}  + 2x - 143 = 0}

\purple{ {x}^{2}  + 13x - 11x  - 143 = 0}

\purple{ \:(x+13)(x−11)=0 \: }

\purple{ \: x=11 as \:  x \:  is \:  positive\: }

\mathfrak\red{ \:  \:  \:Hence \:  required  \: integers \:  are \:  11  \: and  \: 13</p><p>}

Similar questions