Math, asked by ppdeepthi2, 18 days ago

The sum of the 1st 13 terms of an Arithmetic sequence is 208 & the sum of the 1st 16 terms is 304.
a What is the 7th term
b) 15th term?
c) Find the sum of the terms from the 14th term to the 29th terms​

Attachments:

Answers

Answered by pullarahashirvk
0

Step-by-step explanation:

no

Answered by parulsehgal06
0

Answer:

(i) 7th term = 16

(ii) 15th term = 30

(iii) Sum of the terms from 14th term to 29th term = 688

Step-by-step explanation:

Given,

 Sum of 1st 13 terms = S₁₃ =  208

 Sum of 1st 6 terms = S₁₆ = 304

     We can write,

              S₁₃ = (13/2)[2a+(13-1)d] = 208

                           2a+12d = 208×(2/13)

                              a+6d = 208/13

                              a+6d = 16  ---------(i)

             S₁₆ = (16/2)[2a+(16-1)d]  = 304

                               8×[ 2a+15d] = 304

                                      2a+15d = 304/8

                                       2a+15d = 38 ------------(ii)

                     multiply equation (i) with 2

                            2[a+6d] = 16×2

                             2a+12d = 32  -----------------(ii)

            Subtract equation (ii) and (iii) then we get

                           15d-12d = 38-32

                                    3d = 6

                                      d = 2

           Now, substitute d = 2 in equation(i) to get 'a' value.

                                a+6(2) = 16

                                         a = 16-12

                                         a = 4

                   we have a = 4 and d = 2

The first term a = 4 and the common difference d = 2 for the Arithmetic progression.

(i) The 7th term = a₇ = a+6d = 4+6(2) = 4+12 = 16

       So, 7th term = 16

(ii) 15th term = a₁₅ = a+14d = 2+14(2) =  2+28 = 30

       So, 15th term = 30

(iii) Sum of the terms from 14th term to 29th term

      =[Sum of first 29 terms - Sum of first 14terms] - common difference

          = [S₂₉ - S₁₄] - 2

          = {(29/2)(2a+(29-1)d)} - {(14/2)(2a+(14-1)d)} - 2

          = [(29/2)(2(4)+28(2))] - [7(2(4)+13(2))] - 2

          = [(29)(4+28)] - [ 7(8+26)] - 2

          = [(29)(32)] - [(7)(34)] - 2

          = (928 - 238 ) - 2

          = 690 - 2

          = 688

  Sum of the terms from 14th term to 29th term = 688

Know more about Arithmetic progression:

https://brainly.in/question/35960097?referrer=searchResults

https://brainly.in/question/50195050?referrer=searchResults

Similar questions