The sum of the 2 digit number is 15. The number obtained by reversing the digit is 9 less than the original number. Find the number
Answers
Let the numbers be x and y.
Therefore,
x + y = 15 ............1st eq
10y + x = 10x + y +9
9y - 9x = 9
Y - x = 1 ......................... 2nd Eq.
Now,
x + y = 15
- x + y = 1 ( 2nd equation )
=) 2y = 16
=) y = 8
Then, put the value of y in the equation.
we get,
x + 8 = 15
=) x = 15 - 8
=) x = 7
Two digit no. is 87
Read more on Brainly.in - https://brainly.in/question/27217#readmore
The sum of the two digits (Let the digits be x each) : 15
x + x = 15
x = 15 - x
Thus, one digit will be x and other (15-x).
Original number – 10(x) + (15-x)
= 10x + 15 - x = 9x + 15
Number after reversing the digits – 10(15 - x) + x
= 150 - 10x + x = 150-9x
Now, as per the question, this number is 9 less than the original.
Equation:
(9x + 15) - 9 = 150 - 9x
= 9x + 15 - 9 = 150 - 9x
= 9x + 6 = 150 - 9x
= 9x + 9x = 150 - 6
= 18x = 144
= x = 8
The number (By substituting the value of x) = 9(8) + 15
= 72 + 15 = 87
Therefore, the number is 87.