Math, asked by aftabalam1974, 10 months ago

the sum of the 4th term and 8th term of an AP is 24 and the sum of the 6th and 10th is 44. Find first three terms of the AP​

Answers

Answered by Anonymous
5

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{First \ three \ terms \ are \ -13, \ -8 \ and}

\sf{-3 \ respectively.}

\huge\orange{Given:}

\sf{In \ an \ A.P.,}

\sf{\implies{t4+t8=24}}

\sf{\implies{t6+t10=44}}

\huge\pink{To \ find:}

\sf{First \ three \ terms \ of \ the \ A.P.}

\huge\green{\underline{\underline{Solution:}}}

\sf{tn=a+(n-1)d...formula}

\sf{\implies{t4+t8=24}}

\sf{a+3d+a+7d=24}

\sf{\therefore{2a+10d=24}}

\sf{2(a+5d)=24}

\sf{\therefore{a+5d=\frac{24}{2}}}

\sf{\implies{a+5d=12...(1)}}

\sf{\implies{t6+t10=44}}

\sf{a+5d+a+9d=44}

\sf{\therefore{2a+14d=44}}

\sf{2(a+7d)=44}

\sf{\therefore{a+7d=\frac{44}{2}}}

\sf{\implies{a+7d=22...(2)}}

\sf{Subract \ equation \ (1) \ from \ equation (2)}

\sf{a+7d=22}

\sf{-}

\sf{a+5d=12}

________________

\sf{2d=10}

\sf{\therefore{d=\frac{10}{2}}}

\sf{\implies{d=5}}

\sf{Substitute \ d=5 \ in \ equation \ (1)}

\sf{a+5(5)=12}

\sf{\therefore{a+25=12}}

\sf{\therefore{a=12-25}}

\sf{\implies{a=-13}}

\sf{First \ three \ terms \ of \ A.P. \ are:}

\sf{a, \ a+d \ and \ a+2d}

\sf{\therefore{t1=-13, \ t2=-13+5=-8 \ and}}

\sf{t3=-13+2(5)=-13+10=-3}

\sf\purple{\tt{\therefore{First \ three \ terms \ are \ -13, \ -8 \ and}}}

\sf\purple{\tt{-3 \ respectively.}}

Answered by Anonymous
22

\large{\underline{\bf{\pink{Given:-}}}}

  • ✭ Sum of 4th term and 8th term

⠀⠀⠀⠀⠀⠀⠀ = 24

  • ✭ sum of 6th and 10th term = 44

\large{\underline{\bf{\pink{To\:Find:-}}}}

  • ✭ we have to find 1st three terms.

\huge{\underline{\bf{\purple{Solution:-}}}}

we know that :-

 \longmapsto\rm\:a_ 4 = a + 3d\\  \\ \: \longmapsto\rm \: a_ 8 = a + 7d \\  \\ \longmapsto\rm \: a_ 6 = a + 5d \\  \\ \longmapsto\rm \: a_ {10} = a + 9d\\\\

 \longmapsto  \rm\:T_4+T_8=24\: \\  \\ \longmapsto  \rm\:(a + 3d) +(a + 7d) = 24 \\  \\\longmapsto  \rm\:2a + 10d = 24 \\   \\   \rm\: divide \: both \: side \: by \: 2 \\  \\\longmapsto  \rm\:a + 5d = 12 \:  \:  \:  \:  \: ..........(i) \\\\

 \longmapsto  \rm\:and\:\:T_6+T_{10}=44\: \\  \\\longmapsto  \rm\:(a + 5d) + (a + 9d) = 44 \\  \\\longmapsto  \rm\:2a + 14d = 44 \\  \\  \rm\:divide \: both \: side \: by \: 2 \\  \\ \longmapsto  \rm\:a + 7d = 22 \:  \:  \:  \:......... (ii)  \\\\

   \rm\:a + 5d = 12 \\   \rm \: a + 7 d = 22\\ -  \:  \:  \:  - \:  \:  \:  \:  \:  \:  \:   - \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\  \rm \:  \:  \:  \:  \:  - 2d \:  \:  =  - 10 \\  \rm \:  \:  \:  \:  \:  \:  \: d =  \cancel \frac{ - 10}{ - 2} \\  \\ \rm \:  \:  \:  \:  \:  \:  \: d = 5   \\\\

putting value of d in equation (i).

 \longmapsto  \rm\:a + 5d = 12\:\\\\\longmapsto  \rm\:a+5\times5=12\\\\\longmapsto  \rm\:a+25=12\\\\\longmapsto  \rm\:a=-13\\\\\\

Now,

first three terms are :-

 \longmapsto  \rm\:a =  - 13\: \\  \\ \longmapsto  \rm\:a + d =  - 13 + 5 \\ \\  =  >  \rm\: -8 \\  \\\longmapsto  \rm\: a + 2d =  - 13 + 2 \times 5 \\  \\\longmapsto  \rm\: - 13 + 10 \\  \\ \longmapsto  \rm\: - 3  \\\\

Hence first three terms of AP are :-

-13 , -8 , -3

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions