The sum of the 4th terms of an AP is 24 and the sum of 6th and the 10th terms is 44. Find the first three terms of the AP.
Answers
Answered by
4
Step-by-step explanation:
i think this is correct solution
Attachments:
Answered by
5
Answer:
- 13 , - 8 , - 3 .
Step-by-step explanation:
Let the first term a and common difference be d.
We know :
t_n = a + ( n - 1 ) d
t_4 = a + 3 d
t_8 = a + 7 d
We have given :
t_4 + t_8 = 24
2 a + 10 d = 24
a + 5 d = 12
a = 12 - 5 d ....( i )
t_6 = a + 5 d
t_10 = a + 9 d
: t_6 + t_10 = 44
2 a + 14 d = 44
a + 7 d = 22
a = 22 - 7 d ... ( ii )
From ( i ) and ( ii )
12 - 5 d = 22 - 7 d
7 d - 5 d = 22 - 12
2 d = 10
d = 5
We have :
a = 12 - 5 d
a = 12 - 25
a = - 13
Now required answer as :
- 13 , - 8 , - 3 .
Finally we get answer.
Similar questions