Math, asked by rishikathakkar62222, 5 months ago

The sum of the 5th and the 7th term of an ap is 52 and the 10th term is 46 find the ap ​

Answers

Answered by ShírIey
56

Given that, sum of 5th & the 7th term of the Arithmetic Progression (AP) is 52. And also, 10th term is 46.

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf a + 9d = 46 \qquad\qquad\bigg\lgroup\bf eq\;(1)\bigg\rgroup\\\\\\:\implies\sf a + 4d + a + 6d = 52 \\\\\\:\implies\sf 2a + 10d = 52  \\\\\\:\implies\sf 2(a + 5d) = 52 \\\\\\:\implies\sf a + 5d = \dfrac{\cancel{52}}{\cancel{\:2}} \\\\\\:\implies\sf a + 5d = 26  \qquad\qquad\bigg\lgroup\bf eq\;(2)\bigg\rgroup

\dag\;{\underline{\frak{Now, \ Subtracting \;eq\:(2)\;from\;eq\:(1),}}}\\ \\

:\implies\sf a + 9d = 46 \\\\\\:\implies\sf a + 5d = 26\\\\\\:\implies\sf 4d = 20\\\\\\:\implies\sf d = \dfrac{\cancel{20}}{\cancel{\:4}}\\\\\\:\implies\boxed{\frak{\pink{d = 5}}}

\therefore\;{\underline{\sf{Here, \ we \ get \ value \ of \ d \ is \; {\textsf{\textbf{5}}}.}}}

⠀⠀⠀

☯ Now, Putting value of d in eq (2),

:\implies\sf a + 5d = 26 \\\\\\:\implies\sf a + 5(5) = 26\qquad\qquad\bigg\lgroup\bf d = 5\bigg\rgroup\\\\\\:\implies\sf a + 25 = 26\\\\\\:\implies\sf a = 26 - 25\\\\\\:\implies\boxed{\frak{\pink{a = 1}}}

\\

So now,

  • a + d, 1 + 5 = 6
  • \sf a_2 + d, 6 + 5 = 11
  • \sf a_3 + d, 11 + 5 = 16

  • 1, 6, 11, 16, 21, 26.... so on.

\star\:\boxed{\textsf{This is required Arithmetic Progression}}


řåhûł: Beautifully explained (☆‿☆)
ShírIey: Haye dhanywaad! ( ◜‿◝ )♡
Answered by MrAnonymous412
78

QuésTion :-

➫ The sum of the 5th and the 7th term of an ap is 52 and the 10th term is 46 find the Ap.

AnsWer :-

The Ap formed is 1 ,6 , 11 , 16 .............

Given :-

➢ The sum of the 5th and the 7th term of an ap is 52 and the 10th term is 46.

Formula used :-

 ➤    \:  \:  \:  \: \red{ \overline  \red{\underline {\red{\boxed{   \green{\:  \:  \:  \:  \:  \: \sf \: t_n = a + (n - 1)d  \:  \:  \:  \:  \:  \:  \: \: }}}}}} \\

SolutiOn :-

Let 'a' be the first term and 'd' be the the common difference , then ,

 \bigstar \sf \: a_5 = a + (5 - 1)d \:  = a + 4d \\

 \bigstar \sf \: a_7= a + (7 - 1)d \:  = a + 6d \\

Therefore,

 \:  \:  \:  \:  \:  \implies \sf \: a_5 + a_7 = a + 4d + a + 6d = 52 \\

 \:  \:  \:  \:  \:  \implies \sf \: 2 a + 10d = 52 \\

After dividing whole equation by 2 ,

 \:  \:  \:  \:  \:  \implies \sf \: a + 5d = 26 \\

 \:  \:  \:  \:  \:  \implies \sf \: a = 26 - 5d  .............................  \color{yellow}\boxed{ \rm equation \: no.1}\\

Similarly,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: a_{10}= a + (10 - 1)d \: \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \:  \: = a + 9d \:  = 46..........................(2)\\

By substitution method, using eqⁿ 1 & 2 ,

26 - 5d = 9d - 46

➨ 9d - 5d = 46 - 26

➨ 4d = 20

➨d = 20/4

d = 5

Now put the value of 'd' in equation 1,

 \:  \:  \:  \:  \: \sf \: a = 26 - 5  \times 5  \\

 \:  \:  \:  \:  \: ➩ \:  \: \sf \: a = 26 - 25  \\

 \:  \:  \:  \:  \: ➩ \:  \: \sf \: a = 1  \\

Now,

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  1. \:  \:  \: \:   a_2 = a_1 + d \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: = 1 +  5\\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: = 6\\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2. \:  \:  \: \:   a_3 = a_2 + d \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: = 6+  5\\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: =11  \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3. \:  \:  \: \:   a_4 = a_3 + d \\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: = 11+  5\\

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:    \:  \:  \:  \:  \: \:  \:   \:  \: =16  \\

:. The Ap formed is 1,6,11,16..................

_____________________

More formulae :-

 ➤    \:  \:  \:  \: \red{ \overline  \red{\underline {\red{\boxed{   \green{\:  \:  \:  \:  \:  \: \sf \: t_n = a + (n - 1)d  \:  \:  \:  \:  \:  \:  \: \: }}}}}} \\

 ➤    \:  \:  \:  \: \red{ \overline  \red{\underline {\red{\boxed{   \green{\:  \:  \:  \:  \:  \: \sf \: S_n =  \frac{n}{2}  [ \ \times  2a+ (n - 1)d  ] \:  \:  \:  \:  \:  \:  \: \: }}}}}}\:  \: \\

_____________________

Similar questions