Math, asked by mapth, 1 year ago

the sum of the area of two squares is 468 m^2 and the difference of perimeters are 24 m. tell the sides of the squares?

Answers

Answered by MonarkSingh
6
Here is your answer
Hope it helps you
If it helps plzz mark me as brainliest
Attachments:
Answered by SmãrtyMohït
21
Here is your solution

Let, \\ \\The \: sides \: of \: the \: two \: squares \: are:-\\ \: a\: and \:b<br />\\ <br />\\ Sum \: of \: their \: areas \: \\= a^2 + b^2 = 468 \\ \\ <br /><br />Difference \: of \: their \: perimeters \: \: \\=&gt;4a - 4b = 24 \\ <br /><br />=&gt; a - b = 6 \\ <br /><br />=&gt; a = b + 6 \\ <br /><br />So, we \: get \: the \: equation \\ <br /><br />(b + 6)^2 + b^2 = 468 \\ <br /><br />=&gt; 2b^2 + 12b + 36 = 468 \\ <br /><br />=&gt; b^2 + 6b - 216 = 0 \\ <br />=&gt;b^2+18b-12b-216=0\\<br />=&gt;b (b+18)-12(b+18)=0\\<br />=&gt;(b+18)(b-12)\\\\<br />=&gt; b = 12\: or\: b\:=\:-18 \\ <br /><br />we\: take\: b\:=12 \:positive\: only\\<br />=&gt;a=b+6\\<br />=&gt; a = 18 \\ <br /><br />The \: sides \: of \: the \: two \: squares \: are\\ \: 12m \: and \: 18m<br /><br />

PavethaSri: osm
Similar questions