Math, asked by anyajain2131, 9 months ago

The sum of the areas of two squares is 360 if the difference between their perimeter is 48 then find sides of square

Answers

Answered by Mysterioushine
0

let the side of the first square be x and second square be y

Given , 4x - 4y = 48 => x - y = 12 => x = 12 + y ----(1)

x^2 + y^2 = 360

=> (12+y)^2 + y^2 = 360 {∵ fromeq(1) }

{ (a+b)^2 = a^2 + b^2 + 2ab }

=> 144 + y^2 + 24y + y^2 = 360

=> 2y^2 + 24y -216 = 0

{ Factors of -216×2 whose sum or difference is 24 are -12 and 36}

=> 2y^2 - 12y + 36y - 216 = 0

=> 2y( y - 6 ) +36 ( y - 6 ) = 0

=> ( y -6 )( 2y + 36 ) =0

=> y = 6 (or) y = -18

side of square can't be negative so y is 6

from eq(1) ,

x = 12 + 6 = 18

Answered by Anonymous
6

\red{\underline{\underline{Answer:}}}

\sf{The \ sides \ of \ square \ are \ 18 \ and}

\sf{6 \ units \ respectively.}

\orange{\underline{\underline{Given:}}}

\sf{\implies{The \ sum \ of \ the \ areas}}

\sf{of \ two \ squares \ is \ 360.}

\sf{\implies{Difference \ between \ the \ perimeter}}

\sf{is \ 48.}

\pink{\underline{\underline{To \ find:}}}

\sf{Sides \ of \ square.}

\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ side \ of \ first \ square \ be}

\sf{x \ unit's \ and \ side \ of \ second \ square}

\sf{be \ y \ units.}

\sf{According \ to \ first \ condition.}

\sf{\implies{x^{2}+y^{2}=360...(1)}}

\sf{According \ to \ second \ condition.}

\sf{4x-4y=48}

\sf{4(x-y)=48}

\sf{x-y=\frac{48}{4}}

\sf{\implies{x-y=12...(2)}}

\sf{a^{2}+b^{2}=(x-y)^{2}+2ab}

\sf{According \ to \ identity}

\sf{x^{2}+y{2}=(x-y)^{2}+2xy}

\sf{from \ (1) \ and \ (2)}

\sf{360=12^{2}+2xy}

\sf{360=144+2xy}

\sf{2xy=360-144}

\sf{2xy=216}

\sf{xy=\frac{216}{2}}

\sf{\implies{xy=108...(3)}}

\sf{(a+b)^{2}=(a-b)^{2}+4ab}

\sf{According \ to \ identity}

\sf{(x+y)^{2}=144+4(108)}

\sf{(x+y)^{2}=144+432}

\sf{(x+y)^{2}=576}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x+y=24...(4)}}

\sf{Add \ equations \ (2) \ and \ (4)}

\sf{x-y=12}

\sf{+}

\sf{x+y=24}

_______________

\sf{2x=36}

\sf{x=\frac{36}{2}}

\sf{\implies{x=18}}

\sf{Substitute \ x=18 \ in \ equation \ (4)}

\sf{18+y=24}

\sf{y=24-18}

\sf{\implies{y=6}}

\sf\purple{\tt{\therefore{The \ sides \ of \ square \ are \ 18 \ and}}}

\sf\purple{\tt{6 \ units \ respectively.}}

Similar questions